A357849 Number of integer partitions (w,x,y) summing to n such that 2w = 3x + 4y.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3
Offset: 0
Keywords
Examples
The partitions for n = 34, 64, 89, 119, 144: (21,10,3) (39,22,3) (54,32,3) (72,44,3) (87,54,3) (40,16,8) (55,26,8) (73,38,8) (88,48,8) (56,20,13) (74,32,13) (89,42,13) (75,26,18) (90,36,18) (91,30,23)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,{3}],2*#[[1]]==3*#[[2]]+4*#[[3]]&]],{n,0,100}]
-
Python
def A357849(n): return sum(1 for y in range(1,n-1) if (m:=2*n-6*y)>=5*y and 5*(n-y)>=2*m and m%5==0) # Chai Wah Wu, Nov 02 2022