This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357851 #5 Oct 29 2022 09:10:22 %S A357851 2,8,18,32,45,50,72,98,105,128,162,180,200,231,242,275,288,338,392, %T A357851 420,429,450,455,512,578,648,663,720,722,800,833,882,924,935,968,969, %U A357851 1050,1058,1100,1125,1152,1235,1250,1311,1352,1458,1463,1568,1680,1682,1716 %N A357851 Numbers k such that the half-alternating sum of the prime indices of k is 1. %C A357851 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %C A357851 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A357851 The terms together with their prime indices begin: %e A357851 2: {1} %e A357851 8: {1,1,1} %e A357851 18: {1,2,2} %e A357851 32: {1,1,1,1,1} %e A357851 45: {2,2,3} %e A357851 50: {1,3,3} %e A357851 72: {1,1,1,2,2} %e A357851 98: {1,4,4} %e A357851 105: {2,3,4} %e A357851 128: {1,1,1,1,1,1,1} %e A357851 162: {1,2,2,2,2} %e A357851 180: {1,1,2,2,3} %e A357851 200: {1,1,1,3,3} %t A357851 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357851 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357851 Select[Range[1000],halfats[primeMS[#]]==1&] %Y A357851 The version for k = 0 is A357631, standard compositions A357625-A357626. %Y A357851 The version for original alternating sum is A001105. %Y A357851 Positions of ones in A357629, reverse A357633. %Y A357851 The skew version for k = 0 is A357632, reverse A357636. %Y A357851 Partitions with these Heinz numbers are counted by A035444, skew A035544. %Y A357851 The reverse version is A357635, k = 0 version A000583. %Y A357851 A056239 adds up prime indices, row sums of A112798. %Y A357851 A316524 gives alternating sum of prime indices, reverse A344616. %Y A357851 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357851 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357851 A357641 counts comps w/ half-alt sum 0, even-length A357642. %Y A357851 Cf. A003963, A053251, A055932, A345958, A357621-A357624, A357630, A357634, A357637, A357639, A357640. %K A357851 nonn %O A357851 1,1 %A A357851 _Gus Wiseman_, Oct 28 2022