This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357852 #18 Oct 30 2022 08:58:09 %S A357852 1,5,7,25,11,35,13,125,49,55,17,175,19,65,77,625,23,245,29,275,91,85, %T A357852 31,875,121,95,343,325,37,385,41,3125,119,115,143,1225,43,145,133, %U A357852 1375,47,455,53,425,539,155,59,4375,169,605,161,475,61,1715,187,1625,203 %N A357852 Replace prime(k) with prime(k+2) in the prime factorization of n. %C A357852 This is the same as A045966 except the first term is 1 instead of 3. %F A357852 a(n) = A003961(A003961(n)). %e A357852 The terms together with their prime indices begin: %e A357852 1: {} %e A357852 5: {3} %e A357852 7: {4} %e A357852 25: {3,3} %e A357852 11: {5} %e A357852 35: {3,4} %e A357852 13: {6} %e A357852 125: {3,3,3} %e A357852 49: {4,4} %e A357852 55: {3,5} %e A357852 17: {7} %e A357852 175: {3,3,4} %e A357852 19: {8} %e A357852 65: {3,6} %e A357852 77: {4,5} %e A357852 625: {3,3,3,3} %t A357852 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357852 Table[Product[Prime[i+2],{i,primeMS[n]}],{n,30}] %o A357852 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = nextprime(nextprime(f[k,1]+1)+1)); factorback(f); \\ _Michel Marcus_, Oct 28 2022 %o A357852 (Python) %o A357852 from math import prod %o A357852 from sympy import nextprime, factorint %o A357852 def A357852(n): return prod(nextprime(p,ith=2)**e for p, e in factorint(n).items()) # _Chai Wah Wu_, Oct 29 2022 %Y A357852 Applying the transformation only once gives A003961. %Y A357852 A permutation of A007310. %Y A357852 Other multiplicative sequences: A064988, A064989, A357977, A357980, A357983. %Y A357852 A000040 lists the primes. %Y A357852 A056239 adds up prime indices, row-sums of A112798. %Y A357852 Cf. A000720, A003964, A066207, A076610, A215366, A296150, A299201, A357979. %K A357852 nonn,mult %O A357852 1,2 %A A357852 _Gus Wiseman_, Oct 28 2022