cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357853 Fully multiplicative with a(prime(k)) = A000009(k+1).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 4, 2, 5, 3, 4, 1, 6, 4, 8, 2, 6, 4, 10, 2, 4, 5, 8, 3, 12, 4, 15, 1, 8, 6, 6, 4, 18, 8, 10, 2, 22, 6, 27, 4, 8, 10, 32, 2, 9, 4, 12, 5, 38, 8, 8, 3, 16, 12, 46, 4, 54, 15, 12, 1, 10, 8, 64, 6, 20, 6, 76, 4, 89, 18, 8, 8, 12, 10
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Examples

			We have 525 = prime(2)*prime(3)*prime(3)*prime(4) so a(525) = Q(3)*Q(4)*Q(4)*Q(5) = 2*2*2*3 = 24, where Q = A000009.
		

Crossrefs

Other multiplicative sequences: A003961, A064988, A064989, A357852, A357980.
The non-strict version is A003964.
The unshifted horizontal version is A357978, non-strict A357977.
The unshifted version is A357982.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ptf[f_][n_]:=Product[f[i],{i,primeMS[n]}];
    Array[ptf[PartitionsQ[#+1]&],100]