This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357858 #7 Oct 17 2022 12:32:10 %S A357858 1,1,1,3,1,3,1,6,2,3,1,7,1,3,3,11,1,7,1,8,3,3,1,14,3,3,4,8,1,11,1,19, %T A357858 3,3,3,18,1,3,3,18,1,12,1,8,8,3,1,27,3,10,3,8,1,16,3,19,3,3,1,25,1,3, %U A357858 8,33,3,12,1,8,3,12,1,35,1,3,11,8,3,12,1,34,9 %N A357858 Number of integer partitions that can be obtained by iteratively adding and multiplying together parts of the integer partition with Heinz number n. %C A357858 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A357858 The a(n) partitions for n = 1, 4, 8, 9, 12, 16, 20, 24: %e A357858 () (1) (1) (4) (2) (1) (3) (2) %e A357858 (2) (2) (22) (3) (2) (4) (3) %e A357858 (11) (3) (4) (3) (5) (4) %e A357858 (11) (21) (4) (6) (5) %e A357858 (21) (22) (11) (31) (6) %e A357858 (111) (31) (21) (32) (21) %e A357858 (211) (22) (41) (22) %e A357858 (31) (311) (31) %e A357858 (111) (32) %e A357858 (211) (41) %e A357858 (1111) (211) %e A357858 (221) %e A357858 (311) %e A357858 (2111) %t A357858 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357858 ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]]; %t A357858 Table[Length[ReplaceListRepeated[{primeMS[n]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}]],{n,100}] %Y A357858 The single-part partitions are counted by A319841, with an inverse A319913. %Y A357858 The minimum is A319855, maximum A319856. %Y A357858 A000041 counts integer partitions. %Y A357858 A001222 counts prime indices, distinct A001221. %Y A357858 A056239 adds up prime indices. %Y A357858 A066739 counts representations as a sum of products. %Y A357858 Cf. A000792, A001055, A001970, A005520, A048249, A063834, A066815, A318948, A319850, A319909, A319910. %K A357858 nonn %O A357858 1,4 %A A357858 _Gus Wiseman_, Oct 17 2022