cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357859 Number of integer factorizations of 2n into distinct even factors.

This page as a plain text file.
%I A357859 #6 Oct 17 2022 12:32:15
%S A357859 1,1,1,2,1,2,1,2,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,5,1,2,1,3,1,3,1,4,1,2,
%T A357859 1,4,1,2,1,5,1,3,1,3,1,2,1,7,1,2,1,3,1,3,1,5,1,2,1,6,1,2,1,5,1,3,1,3,
%U A357859 1,3,1,7,1,2,1,3,1,3,1,7,1,2,1,6,1,2,1
%N A357859 Number of integer factorizations of 2n into distinct even factors.
%e A357859 The a(n) factorizations for n = 2, 4, 12, 24, 32, 48, 60, 96:
%e A357859   (4)  (8)    (24)    (48)     (64)     (96)      (120)     (192)
%e A357859        (2*4)  (4*6)   (6*8)    (2*32)   (2*48)    (2*60)    (2*96)
%e A357859               (2*12)  (2*24)   (4*16)   (4*24)    (4*30)    (4*48)
%e A357859                       (4*12)   (2*4*8)  (6*16)    (6*20)    (6*32)
%e A357859                       (2*4*6)           (8*12)    (10*12)   (8*24)
%e A357859                                         (2*6*8)   (2*6*10)  (12*16)
%e A357859                                         (2*4*12)            (4*6*8)
%e A357859                                                             (2*4*24)
%e A357859                                                             (2*6*16)
%e A357859                                                             (2*8*12)
%t A357859 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A357859 Table[Length[Select[facs[2*n],UnsameQ@@#&&OddQ[Times@@(#+1)]&]],{n,100}]
%Y A357859 The version for partitions instead of factorizations is A000009.
%Y A357859 Positions of 1's are A004280.
%Y A357859 The non-strict version is A340785.
%Y A357859 Including odd n gives A357860.
%Y A357859 A000005 counts divisors.
%Y A357859 A001055 counts factorizations.
%Y A357859 A001221 counts distinct prime factors, sum A001414.
%Y A357859 A001222 counts prime-power divisors.
%Y A357859 A050361 counts strict factorizations into prime powers.
%Y A357859 Cf. A000688, A000961, A023894, A295935, A318721.
%K A357859 nonn
%O A357859 1,4
%A A357859 _Gus Wiseman_, Oct 17 2022