This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357859 #6 Oct 17 2022 12:32:15 %S A357859 1,1,1,2,1,2,1,2,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,5,1,2,1,3,1,3,1,4,1,2, %T A357859 1,4,1,2,1,5,1,3,1,3,1,2,1,7,1,2,1,3,1,3,1,5,1,2,1,6,1,2,1,5,1,3,1,3, %U A357859 1,3,1,7,1,2,1,3,1,3,1,7,1,2,1,6,1,2,1 %N A357859 Number of integer factorizations of 2n into distinct even factors. %e A357859 The a(n) factorizations for n = 2, 4, 12, 24, 32, 48, 60, 96: %e A357859 (4) (8) (24) (48) (64) (96) (120) (192) %e A357859 (2*4) (4*6) (6*8) (2*32) (2*48) (2*60) (2*96) %e A357859 (2*12) (2*24) (4*16) (4*24) (4*30) (4*48) %e A357859 (4*12) (2*4*8) (6*16) (6*20) (6*32) %e A357859 (2*4*6) (8*12) (10*12) (8*24) %e A357859 (2*6*8) (2*6*10) (12*16) %e A357859 (2*4*12) (4*6*8) %e A357859 (2*4*24) %e A357859 (2*6*16) %e A357859 (2*8*12) %t A357859 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A357859 Table[Length[Select[facs[2*n],UnsameQ@@#&&OddQ[Times@@(#+1)]&]],{n,100}] %Y A357859 The version for partitions instead of factorizations is A000009. %Y A357859 Positions of 1's are A004280. %Y A357859 The non-strict version is A340785. %Y A357859 Including odd n gives A357860. %Y A357859 A000005 counts divisors. %Y A357859 A001055 counts factorizations. %Y A357859 A001221 counts distinct prime factors, sum A001414. %Y A357859 A001222 counts prime-power divisors. %Y A357859 A050361 counts strict factorizations into prime powers. %Y A357859 Cf. A000688, A000961, A023894, A295935, A318721. %K A357859 nonn %O A357859 1,4 %A A357859 _Gus Wiseman_, Oct 17 2022