A357863 Numbers whose prime indices do not have strictly increasing run-sums. Heinz numbers of the partitions not counted by A304428.
12, 24, 40, 45, 48, 60, 63, 80, 84, 90, 96, 112, 120, 126, 132, 135, 144, 156, 160, 168, 175, 180, 189, 192, 204, 224, 228, 240, 252, 264, 270, 275, 276, 280, 288, 297, 300, 312, 315, 320, 325, 336, 348, 350, 351, 352, 360, 372, 378, 384, 405, 408, 420, 440
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 12: {1,1,2} 24: {1,1,1,2} 40: {1,1,1,3} 45: {2,2,3} 48: {1,1,1,1,2} 60: {1,1,2,3} 63: {2,2,4} 80: {1,1,1,1,3} 84: {1,1,2,4} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 112: {1,1,1,1,4} 120: {1,1,1,2,3} 126: {1,2,2,4} 132: {1,1,2,5} 135: {2,2,2,3} 144: {1,1,1,1,2,2} 156: {1,1,2,6}
Links
- Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)
Crossrefs
These are the indices of rows in A354584 that are not strictly increasing.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],!Less@@Total/@Split[primeMS[#]]&]
Comments