cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357864 Numbers whose prime indices have strictly decreasing run-sums. Heinz numbers of the partitions counted by A304430.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 24, 25, 27, 29, 31, 32, 37, 41, 43, 45, 47, 48, 49, 53, 59, 61, 64, 67, 71, 73, 79, 80, 81, 83, 89, 96, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 135, 137, 139, 149, 151, 157, 160, 163, 167, 169, 173
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   29: {10}
For example, the prime indices of 24 are {1,1,1,2}, with run-sums (3,2), which are strictly decreasing, so 24 is in the sequence.
		

Crossrefs

Subsequence of A304686.
These partitions are counted by A304430.
These are the indices of rows in A354584 that are strictly decreasing.
The weakly decreasing version is A357861, counted by A304406.
The opposite version is A357862, counted by A304428, complement A357863.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[300],Greater@@Total/@Split[primeMS[#]]&]