cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357865 Number of integer partitions of n whose run-sums are not weakly increasing.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 5, 10, 13, 22, 31, 45, 57, 85, 115, 155, 199, 267, 344, 452, 577, 744, 940, 1191, 1486, 1877, 2339, 2910, 3595, 4442, 5453, 6688, 8162, 9960, 12089, 14662, 17698, 21365, 25703, 30869, 36961, 44207, 52728, 62801, 74644, 88587, 104930, 124113
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2022

Keywords

Comments

The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(8) = 13 partitions:
  .  .  .  (21)  (31)  (32)   (42)    (43)     (53)
                       (41)   (51)    (52)     (62)
                       (221)  (321)   (61)     (71)
                       (311)  (411)   (331)    (332)
                              (2211)  (421)    (431)
                                      (511)    (521)
                                      (2221)   (611)
                                      (3211)   (3221)
                                      (4111)   (3311)
                                      (22111)  (4211)
                                               (5111)
                                               (22211)
                                               (32111)
		

Crossrefs

The complement is counted by A304406, ranked by A357861.
Number of rows in A354584 summing to n that are not weakly decreasing.
These partitions are ranked by A357850.
The opposite (not weakly decreasing) version is A357878, ranked by A357876.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!LessEqual@@Total/@Split[#]&]],{n,0,30}]