A357866 a(n) is the greatest remainder of n divided by its sum of digits in any base > 1.
0, 0, 1, 0, 2, 0, 3, 2, 4, 2, 5, 2, 6, 4, 7, 4, 8, 4, 9, 6, 10, 6, 11, 6, 12, 8, 13, 8, 14, 8, 15, 10, 16, 10, 17, 10, 18, 12, 19, 12, 20, 12, 21, 14, 22, 14, 23, 14, 24, 16, 25, 16, 26, 16, 27, 18, 28, 18, 29, 18, 30, 20, 31, 20, 32, 20, 33, 22, 34, 22, 35
Offset: 1
Examples
For n = 11, we have: b sum of digits remainder ---- ------------- --------- 2 3 2 3 3 2 4 5 1 5 3 2 6 6 5 7 5 1 8 4 3 9 3 2 10 2 1 11 1 0 >=12 11 0 so a(11) = 5.
Programs
-
PARI
a(n) = { my (mx=0); for (b=2, n, mx=max(mx, n%sumdigits(n, b))); return (mx); }
-
Python
from sympy.ntheory import digits def a(n): return max((n%sum(digits(n, b)[1:]) for b in range(2, n+1)), default=0) print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Oct 17 2022