This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357869 #18 Jan 05 2024 12:29:43 %S A357869 1,1,0,1,1,0,1,0,2,0,1,0,2,5,0,1,0,0,6,15,0,1,0,0,6,26,52,0,1,0,0,0, %T A357869 36,150,203,0,1,0,0,0,24,150,962,877,0,1,0,0,0,0,240,900,6846,4140,0, %U A357869 1,0,0,0,0,120,1560,9366,54266,21147,0,1,0,0,0,0,0,1800,8400,101556,471750,115975,0 %N A357869 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j)/j!. %H A357869 Andrew Howroyd, <a href="/A357869/b357869.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals) %F A357869 For k > 0, e.g.f. of column k: exp((exp(x) - 1)^k). %F A357869 T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * Stirling2(j,k) * T(n-j,k). %e A357869 Square array begins: %e A357869 1, 1, 1, 1, 1, 1, ... %e A357869 0, 1, 0, 0, 0, 0, ... %e A357869 0, 2, 2, 0, 0, 0, ... %e A357869 0, 5, 6, 6, 0, 0, ... %e A357869 0, 15, 26, 36, 24, 0, ... %e A357869 0, 52, 150, 150, 240, 120, ... %o A357869 (PARI) T(n, k) = sum(j=0, n, (k*j)!*stirling(n, k*j, 2)/j!); %o A357869 (PARI) T(n, k) = if(k==0, 0^n, n!*polcoef(exp((exp(x+x*O(x^n))-1)^k), n)); %Y A357869 Columns k=0-4 give: A000007, A000110, A052859, A353664, A353665. %Y A357869 Cf. A324162, A357293, A357868. %K A357869 nonn,tabl %O A357869 0,9 %A A357869 _Seiichi Manyama_, Oct 17 2022