A357874 Numbers whose multiset of prime factors has at least two multiset partitions that are isomorphic.
30, 36, 42, 60, 66, 70, 78, 84, 90, 100, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 30: {1,2,3} 36: {1,1,2,2} 42: {1,2,4} 60: {1,1,2,3} 66: {1,2,5} 70: {1,3,4} 78: {1,2,6} 84: {1,1,2,4} 90: {1,2,2,3} 100: {1,1,3,3} For example, the multiset partitions of the prime indices of 36 include {{1},{1,2,2}} and {{2},{1,1,2}}, which are isomorphic, so 36 is in the sequence.
Crossrefs
Programs
-
Mathematica
brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],!UnsameQ@@brute/@mps[primeMS[#]]&]
Comments