A357876 The run-sums of the prime indices of n are not weakly increasing.
24, 45, 48, 80, 90, 96, 120, 135, 160, 168, 175, 180, 189, 192, 224, 240, 264, 270, 275, 288, 297, 312, 315, 320, 336, 350, 360, 378, 384, 405, 408, 448, 456, 480, 495, 525, 528, 539, 540, 550, 552, 560, 567, 576, 585, 594, 600, 624, 630, 637, 640, 672, 696
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 24: {1,1,1,2} 45: {2,2,3} 48: {1,1,1,1,2} 80: {1,1,1,1,3} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 120: {1,1,1,2,3} 135: {2,2,2,3} 160: {1,1,1,1,1,3} 168: {1,1,1,2,4} 175: {3,3,4} 180: {1,1,2,2,3} 189: {2,2,2,4} 192: {1,1,1,1,1,1,2} For example, the prime indices of 24 are (1,1,1,2), with run-sums (3,2), which are not weakly increasing, so 24 is in the sequence.
Links
- Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],!LessEqual@@Total/@Split[primeMS[#]]&]
Comments