cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357876 The run-sums of the prime indices of n are not weakly increasing.

Original entry on oeis.org

24, 45, 48, 80, 90, 96, 120, 135, 160, 168, 175, 180, 189, 192, 224, 240, 264, 270, 275, 288, 297, 312, 315, 320, 336, 350, 360, 378, 384, 405, 408, 448, 456, 480, 495, 525, 528, 539, 540, 550, 552, 560, 567, 576, 585, 594, 600, 624, 630, 637, 640, 672, 696
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   45: {2,2,3}
   48: {1,1,1,1,2}
   80: {1,1,1,1,3}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  120: {1,1,1,2,3}
  135: {2,2,2,3}
  160: {1,1,1,1,1,3}
  168: {1,1,1,2,4}
  175: {3,3,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  192: {1,1,1,1,1,1,2}
For example, the prime indices of 24 are (1,1,1,2), with run-sums (3,2), which are not weakly increasing, so 24 is in the sequence.
		

Crossrefs

These are the indices of rows in A354584 that are not weakly increasing.
The complement is A357875.
These partitions are counted by A357878.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!LessEqual@@Total/@Split[primeMS[#]]&]