This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357891 #11 Nov 10 2022 12:35:59 %S A357891 1,2,4,11,34,152,1079,6610,93221 %N A357891 a(1) = 1; a(n+1) is the smallest integer > 0 that cannot be obtained from the integers {a(1), ..., a(n)} using each number exactly once and the operators +, -, *, /. %o A357891 (Python) %o A357891 from fractions import Fraction %o A357891 def a(n, v): %o A357891 R = dict() # index of each reachable subset is [card(s)-1][s] %o A357891 for i in range(n): R[i] = dict() %o A357891 for i in range(n): R[0][(v[i], )] = {v[i]} %o A357891 #reach = set(v) %o A357891 for j in range(1, n): %o A357891 for i in range((j+1)//2): %o A357891 for s1 in R[i]: %o A357891 for s2 in R[j-1-i]: %o A357891 if set(s1) & set(s2) == set(): %o A357891 s12 = tuple(sorted(set(s1) | set(s2))) %o A357891 if s12 not in R[len(s12)-1]: %o A357891 R[len(s12)-1][s12] = set() %o A357891 for a in R[i][s1]: %o A357891 for b in R[j-1-i][s2]: %o A357891 allowed = [a+b, a*b, a-b, b-a] %o A357891 if a!=0: allowed.append(Fraction(b, a)) %o A357891 if b!=0: allowed.append(Fraction(a, b)) %o A357891 R[len(s12)-1][s12].update(allowed) %o A357891 k = 1 %o A357891 while k in R[n-1][tuple(v)]: k += 1 %o A357891 return k %o A357891 alst = [1] %o A357891 [alst.append(a(n, alst)) for n in range(1, 6)] %o A357891 print(alst) # _Michael S. Branicky_, Nov 01 2022 %Y A357891 Cf. A071115, A217043, A358075. %K A357891 nonn,hard,more %O A357891 1,2 %A A357891 _Rainer Rosenthal_ and _Hugo Pfoertner_, Nov 01 2022 %E A357891 a(9) from _Michael S. Branicky_, Nov 10 2022