This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357900 #21 Oct 20 2022 07:43:18 %S A357900 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,2,2,1,5,1,1,1,1,3,1,1,1,1,6,1,1, %T A357900 2,1,1,2,1,2,1,1,5,2,5,1,1,5,2,1,2,1,1,4,1,4,1,1,1,1,1,1,2,1,3,1,3,1, %U A357900 4,1,1,4,1,1,17,1,1,5,1,1,1,1,8,1,1,2,1,11,1,2,2,5,1,1,1,2,1,1,3,1,1,19 %N A357900 Number of groups of order A060702(n) with trivial center. %C A357900 Among the data currently known, it seems that the indices of records are n's such that A060702(n) = 1, 18, 54, 72, 162, 216, 486, 648, 972, 1458, ... with record values 1, 2, 5, 6, 17, 19, 72, 79, 109, 443, ... %H A357900 Jianing Song, <a href="/A357900/b357900.txt">Table of n, a(n) for n = 1..372</a> %H A357900 Jianing Song, <a href="/A357900/a357900.txt">Number of centerless groups of order n <= 2022 (skipping n = 768, 1152, 1280, 1536, 1728, 1792, 1920, 2016)</a> %e A357900 a(2) = 1 since there is a unique group of order A060702(2) = 6 with trivial center: S3. %o A357900 (GAP) %o A357900 IsNilpotentNumber := function(n) # if n > 1 is a nilpotent number, then no group of order n has trivial center; see also A056867 %o A357900 local c, omega, i, j; %o A357900 c := PrimePowersInt( n ); %o A357900 omega := Length(c)/2; %o A357900 for i in [1..omega] do %o A357900 for j in [1..c[2*i]] do %o A357900 if GcdInt(n, c[2*i-1]^j-1) > 1 then %o A357900 return false; %o A357900 fi; %o A357900 od; %o A357900 od; %o A357900 return true; %o A357900 end; %o A357900 CountTrivialCenter := function(n) # returns the number of groups of order n with trivial center %o A357900 local count, i; %o A357900 if n > 1 and IsNilpotentNumber(n) then %o A357900 return 0; %o A357900 fi; %o A357900 count := 0; %o A357900 for i in [1..NumberSmallGroups(n)] do %o A357900 if(Size(Center(SmallGroup(n, i))) = 1) then %o A357900 count:=count+1; %o A357900 fi; %o A357900 od; %o A357900 return count; %o A357900 end; %Y A357900 Cf. A060702, A059806, A056867. %K A357900 nonn,hard %O A357900 1,6 %A A357900 _Jianing Song_, Oct 19 2022