cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357909 Primes p such that p+6, p+12, p+18, 4*p+37, 4*p+43, 4*p+49 and 4*p+55 are also all primes.

This page as a plain text file.
%I A357909 #45 Nov 10 2022 07:44:19
%S A357909 408211,6375751,6433741,6718471,19134931,25280791,63908851,67078801,
%T A357909 152418151,159268561,217697911,236220991,237943591,334030981,
%U A357909 363246211,392644921,406249171,410652031,428032441,476660281,478441291,502777111,552727711,552855001,554201731,693654721,816050071,877207141
%N A357909 Primes p such that p+6, p+12, p+18, 4*p+37, 4*p+43, 4*p+49 and 4*p+55 are also all primes.
%C A357909 Start of a "sexy" prime quadruple (in the sense of A023271) such that 1 + the sum of the quadruple is the start of another "sexy" prime quadruple.
%C A357909 All terms == 1 (mod 30).
%H A357909 Robert Israel, <a href="/A357909/b357909.txt">Table of n, a(n) for n = 1..115</a>
%e A357909 a(1) = 408211 is a term because 408211, 408211+6 = 408217, 408211+12 = 408223, 408211+18 = 408229 are primes (a "sexy" prime quadruple), the sum of this quadruple is 4*408211+36 = 1632880, and 1632880+1 = 1632881, 1632880+7 = 1632887, 1632880+13 = 1632893, 1632880+19 = 1632899 is another "sexy" prime quadruple.
%p A357909 Res:= NULL: count:= 0:
%p A357909 for p from 1 by 30 while count < 40 do
%p A357909   if isprime(p) and isprime(p+6) and isprime(p+12) and isprime(p+18)
%p A357909   and isprime(4*p+37) and isprime(4*p+43) and isprime(4*p+49) and isprime(4*p+55)
%p A357909 then Res:= Res, p; count:= count+1
%p A357909 fi
%p A357909 od:
%p A357909 Res;
%Y A357909 Cf. A023271.
%K A357909 nonn
%O A357909 1,1
%A A357909 _J. M. Bergot_ and _Robert Israel_, Nov 09 2022