This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357911 #22 Jan 18 2023 04:51:24 %S A357911 1,-1,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0, %T A357911 0,-1,2,-1,0,0,0,0,0,0,0,0,-1,2,-1,0,0,0,0,0,0,0,0,-1,3,-2,0,0,0,0,0, %U A357911 0,0,0,-1,3,-3,1,0,0,0,0,0,0,0,-1,4,-4,1,0,0,0 %N A357911 Expansion of Product_{k>=0} (1 - x^(11*k+1)) in powers of x. %H A357911 Seiichi Manyama, <a href="/A357911/b357911.txt">Table of n, a(n) for n = 0..10000</a> %F A357911 a(0) = 1; a(n) = -(1/n) * Sum_{k=1..n} A357912(k) * a(n-k). %o A357911 (PARI) my(N=100, x='x+O('x^N)); Vec(prod(k=0, N, 1-x^(11*k+1))) %o A357911 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, sumdiv(j, d, (Mod(d, 11)==1)*d)*v[i-j+1])/i); v; %Y A357911 Cf. Product_{k>=0} (1 - x^(m*k+1)): A081362 (m=2), A284312 (m=3), A284313 (m=4), A284314 (m=5), A284585 (m=6), A284499 (m=7), this sequence (m=11). %Y A357911 Cf. A357912. %K A357911 sign,look %O A357911 0,36 %A A357911 _Seiichi Manyama_, Jan 17 2023