This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357914 #31 Dec 29 2023 13:53:24 %S A357914 1,1,-1,1,0,-1,1,1,-1,0,1,2,0,-1,-1,1,3,2,-1,-2,1,1,4,5,1,-3,-1,-1,1, %T A357914 5,9,6,-2,-4,-2,0,1,6,14,15,4,-6,-6,-2,0,1,7,20,29,19,-2,-12,-8,-2,1, %U A357914 1,8,27,49,48,17,-14,-20,-10,-1,-1,1,9,35,76,97,65,3,-34,-30,-11,-2,0 %N A357914 Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals. %H A357914 Paolo Xausa, <a href="/A357914/b357914.txt">Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)</a> %F A357914 T(1,k) = A008683(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1. %e A357914 Array begins: %e A357914 n\k| 1 2 3 4 5 6 7 8 9 10 ... %e A357914 ---+------------------------------------------------------- %e A357914 1 | 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, ... = A008683 %e A357914 2 | 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, ... = A002321 %e A357914 3 | 1, 1, 0, -1, -3, -4, -6, -8, -10, -11, ... = A091555 %e A357914 4 | 1, 2, 2, 1, -2, -6, -12, -20, -30, -41, ... %e A357914 5 | 1, 3, 5, 6, 4, -2, -14, -34, -64, -105, ... %e A357914 6 | 1, 4, 9, 15, 19, 17, 3, -31, -95, -200, ... %e A357914 7 | 1, 5, 14, 29, 48, 65, 68, 37, -58, -258, ... %e A357914 8 | 1, 6, 20, 49, 97, 162, 230, 267, 209, -49, ... %e A357914 9 | 1, 7, 27, 76, 173, 335, 565, 832, 1041, 992, ... %e A357914 10 | 1, 8, 35, 111, 284, 619, 1184, 2016, 3057, 4049, ... %e A357914 ... %t A357914 A357914list[dmax_]:=With[{a=Reverse[NestList[Accumulate[Most[#]]&, MoebiusMu[Range[dmax]], dmax-1]]}, Array[Diagonal[a, #]&, dmax, 1-dmax]]; %t A357914 A357914list[10] (* Generates 10 antidiagonals *) %Y A357914 Cf. A008683 (row 1), A002321 (row 2), A091555 (row 3), A000012 (column 1), A368429 (main diagonal). %Y A357914 Discarding terms above the main diagonal: A001477 (column 2), A000096 (column 3), A005286 (column 4). %K A357914 sign,tabl %O A357914 1,12 %A A357914 _Paolo Xausa_, Jan 18 2023