cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357914 Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals.

This page as a plain text file.
%I A357914 #31 Dec 29 2023 13:53:24
%S A357914 1,1,-1,1,0,-1,1,1,-1,0,1,2,0,-1,-1,1,3,2,-1,-2,1,1,4,5,1,-3,-1,-1,1,
%T A357914 5,9,6,-2,-4,-2,0,1,6,14,15,4,-6,-6,-2,0,1,7,20,29,19,-2,-12,-8,-2,1,
%U A357914 1,8,27,49,48,17,-14,-20,-10,-1,-1,1,9,35,76,97,65,3,-34,-30,-11,-2,0
%N A357914 Iterated partial sums of the Moebius mu function, square array read by ascending antidiagonals.
%H A357914 Paolo Xausa, <a href="/A357914/b357914.txt">Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened)</a>
%F A357914 T(1,k) = A008683(k) for k >= 1; T(n,k) = Sum_{i=1..k} T(n-1,i) for n > 1, k >= 1.
%e A357914 Array begins:
%e A357914   n\k|  1   2   3    4    5    6     7     8     9    10  ...
%e A357914   ---+-------------------------------------------------------
%e A357914    1 |  1, -1, -1,   0,  -1,   1,   -1,    0,    0,    1, ... = A008683
%e A357914    2 |  1,  0, -1,  -1,  -2,  -1,   -2,   -2,   -2,   -1, ... = A002321
%e A357914    3 |  1,  1,  0,  -1,  -3,  -4,   -6,   -8,  -10,  -11, ... = A091555
%e A357914    4 |  1,  2,  2,   1,  -2,  -6,  -12,  -20,  -30,  -41, ...
%e A357914    5 |  1,  3,  5,   6,   4,  -2,  -14,  -34,  -64, -105, ...
%e A357914    6 |  1,  4,  9,  15,  19,  17,    3,  -31,  -95, -200, ...
%e A357914    7 |  1,  5, 14,  29,  48,  65,   68,   37,  -58, -258, ...
%e A357914    8 |  1,  6, 20,  49,  97, 162,  230,  267,  209,  -49, ...
%e A357914    9 |  1,  7, 27,  76, 173, 335,  565,  832, 1041,  992, ...
%e A357914   10 |  1,  8, 35, 111, 284, 619, 1184, 2016, 3057, 4049, ...
%e A357914   ...
%t A357914 A357914list[dmax_]:=With[{a=Reverse[NestList[Accumulate[Most[#]]&, MoebiusMu[Range[dmax]], dmax-1]]}, Array[Diagonal[a, #]&, dmax, 1-dmax]];
%t A357914 A357914list[10] (* Generates 10 antidiagonals *)
%Y A357914 Cf. A008683 (row 1), A002321 (row 2), A091555 (row 3), A000012 (column 1), A368429 (main diagonal).
%Y A357914 Discarding terms above the main diagonal: A001477 (column 2), A000096 (column 3), A005286 (column 4).
%K A357914 sign,tabl
%O A357914 1,12
%A A357914 _Paolo Xausa_, Jan 18 2023