This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357916 #14 Feb 29 2024 13:45:32 %S A357916 2,3,5,13,23,59,113,137,229,457,509,523,661,1021,2063,3541,3923,4973, %T A357916 5449,5521,9949,10103,10273,12659,14107,15601,16249,17033,22063,25321, %U A357916 29759,32507,34843,36293,37273,52501,54059,62753,68449,68909,89329,99409,103963,111347,125509,139297,146309,157231 %N A357916 Primes p that can be written as phi(k) + d(k) for some k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k. %C A357916 Does any prime have more than one representation as phi(k) + d(k)? %H A357916 Robert Israel, <a href="/A357916/b357916.txt">Table of n, a(n) for n = 1..3000</a> %e A357916 a(4) = 13 is a term because 13 is prime and for k = 16, phi(k) + d(k) = 8 + 5 = 13. %p A357916 N:= 10^6: # to allow k <= N %p A357916 pmax:= evalf(N/(exp(gamma)*log(log(N))+3/log(log(N)))): # lower bound for phi(k), k<=N %p A357916 P:= {3}: %p A357916 for k from 1 to sqrt(N) do %p A357916 n:= k^2; %p A357916 v:= numtheory:-phi(n)+numtheory:-tau(n); %p A357916 if v <= pmax and isprime(v) then %p A357916 P:= P union {v}; %p A357916 fi %p A357916 od: %p A357916 sort(convert(P,list)); %t A357916 Select[Table[EulerPhi[n]+DivisorSigma[0,n],{n,400000}],PrimeQ]//Sort (* _Harvey P. Dale_, Feb 29 2024 *) %Y A357916 Cf. A000005, A000010, A061468, A357917. %K A357916 nonn %O A357916 1,1 %A A357916 _J. M. Bergot_ and _Robert Israel_, Oct 19 2022