A357918 Odd numbers that can be written as phi(k) + d(k) for more than one k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.
2061, 4131, 36981, 78765, 14054589, 889978059, 110543990589
Offset: 1
Examples
a(1) = 2061 = phi(57^2) + d(57^2) = phi(64^2) + d(64^2) = phi(84^2) + d(84^2). a(2) = 4131 = phi(98^2) + d(98^2) = phi(114^2) + d(114^2). a(3) = 36981 = phi(237^2) + d(237^2) = phi(342^2) + d(342^2). a(4) = 78765 = phi(486^2) + d(486^2) = phi(492^2) + d(492^2). a(5) = 14054589 = phi(4593^2) + d(4593^2) = phi(7320^2) + d(7320^2). a(6) = 889978059 = phi(29833^2) + d(29833^2) = phi(45668^2) + d(45668^2). a(7) = 110543990589 = phi(337993^2) + d(337993^2) = phi(423891^2) + d(423891^2).
Programs
-
Maple
N:= 10^12: vmax:= evalf(N/(exp(gamma)*log(log(N))+3/log(log(N)))): Q:= [seq(numtheory:-phi(k^2)+numtheory:-tau(k^2),k=1..sqrt(N))]: QN := select(`<`,Q,vmax): QS:= sort(QN): K:= select(t -> QS[t+1]=QS[t], [$1..nops(QS)-1]): convert(QS[K],set);
Comments