cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357925 a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,n - 3*k).

This page as a plain text file.
%I A357925 #12 Feb 22 2024 18:44:43
%S A357925 1,1,1,1,2,4,7,12,23,47,95,192,402,869,1898,4181,9379,21431,49556,
%T A357925 115770,273919,656476,1590061,3888783,9608337,23980678,60402964,
%U A357925 153469477,393325442,1016628823,2648842279,6955029849,18400676786,49042936328,131646082259
%N A357925 a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,n - 3*k).
%F A357925 G.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - j * x^3).
%t A357925 Table[Sum[StirlingS2[n-2k,n-3k],{k,0,Floor[n/3]}],{n,0,40}] (* _Harvey P. Dale_, Feb 22 2024 *)
%o A357925 (PARI) a(n) = sum(k=0, n\3, stirling(n-2*k, n-3*k, 2));
%o A357925 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/prod(j=1, k, 1-j*x^3)))
%Y A357925 Cf. A024428, A357926.
%Y A357925 Cf. A357903.
%K A357925 nonn
%O A357925 0,5
%A A357925 _Seiichi Manyama_, Oct 20 2022