cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357932 a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,n - 4*k)|.

This page as a plain text file.
%I A357932 #10 Oct 21 2022 10:12:01
%S A357932 1,1,1,1,1,2,4,7,11,18,33,64,122,227,428,838,1684,3396,6841,13912,
%T A357932 28787,60398,127559,270687,579055,1251706,2730345,5994501,13238058,
%U A357932 29436628,65951104,148777927,337606123,770418129,1768566987,4084504483,9486890220
%N A357932 a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,n - 4*k)|.
%F A357932 G.f.: Sum_{k>=0} x^k * Product_{j=0..k-1} (1 + j * x^3).
%o A357932 (PARI) a(n) = sum(k=0, n\4, abs(stirling(n-3*k, n-4*k, 1)));
%o A357932 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, 1+j*x^3)))
%Y A357932 Cf. A124380, A357931, A357933.
%Y A357932 Cf. A353225, A357902, A357926.
%K A357932 nonn
%O A357932 0,6
%A A357932 _Seiichi Manyama_, Oct 21 2022