cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357935 Primes p such that the sum of digits of 11*p is 11.

This page as a plain text file.
%I A357935 #11 Oct 24 2022 08:11:44
%S A357935 19,37,73,919,937,991,1873,2791,3637,3673,3691,4591,6373,8191,91837,
%T A357935 91873,92737,92791,93637,94573,181837,181873,181891,182773,183637,
%U A357935 183691,185491,186391,187273,272737,274591,275491,276373,277273,278191,363691,365473,367273,455473,455491,458191,459091
%N A357935 Primes p such that the sum of digits of 11*p is 11.
%C A357935 Primes in A279771.
%C A357935 All terms == 1 (mod 18).
%C A357935 Includes (8*10^k+3)/11 for k = 2, 6, 60, 320, 600.  Any others?
%H A357935 Robert Israel, <a href="/A357935/b357935.txt">Table of n, a(n) for n = 1..10000</a>
%e A357935 a(3) = 73 is a term because 73 is prime and 11*73 = 803 with 8+0+3 = 11.
%p A357935 filter:= proc(p) convert(convert(11*p,base,10),`+`) = 11 and isprime(p):
%p A357935 select(filter, [seq(i,i=1..10^6,18)]);
%t A357935 Select[Prime[Range[40000]], Plus @@ IntegerDigits[11*#] == 11 &] (* _Amiram Eldar_, Oct 21 2022 *)
%Y A357935 Cf. A166311, A279771.
%K A357935 nonn,base
%O A357935 1,1
%A A357935 _J. M. Bergot_ and _Robert Israel_, Oct 21 2022