This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357950 #23 Nov 11 2022 07:04:50 %S A357950 2,2,6,8,30,18,126,40,504,430,979,240,1105,2198,6820,6016,78812,7812, %T A357950 183920,142580,352884,122870,3459591,421188,10828525,334308,81688176, %U A357950 989212,463347935,5921860,1211061438,26636800,3315517623,187950912,24752893585 %N A357950 Maximum period of an elementary cellular automaton in a cyclic universe of width n. %H A357950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>. %H A357950 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elementary_cellular_automaton">Elementary cellular automaton</a>. %H A357950 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A357950 a(n) >= A334499(n). Equality holds (i.e., the maximum period can be achieved with a single cell initially on) for all n <= 35, except n = 12, 13, 23, 24, 25, 26, 28, 34. %F A357950 Trivially a(n) <= 2^n. - _Charles R Greathouse IV_, Nov 09 2022 %e A357950 Examples of rules and initial states that give the maximum period: %e A357950 n a(n) rule initial state %e A357950 -------------------------------- %e A357950 1 2 1 0 %e A357950 2 2 1 00 %e A357950 3 6 14 001 %e A357950 4 8 3 0001 %e A357950 5 30 45 00001 %e A357950 6 18 45 000001 %e A357950 7 126 45 0000001 %e A357950 8 40 30 00000001 %e A357950 9 504 45 000000001 %e A357950 10 430 45 0000000001 %e A357950 11 979 45 00000000001 %e A357950 12 240 45 000000100001 %e A357950 13 1105 45 0000000001011 %e A357950 14 2198 45 00000000000001 %e A357950 15 6820 75 000000000000001 %e A357950 16 6016 30 0000000000000001 %e A357950 17 78812 45 00000000000000001 %e A357950 18 7812 75 000000000000000001 %Y A357950 Cf. A334499. %K A357950 nonn %O A357950 1,1 %A A357950 _Pontus von Brömssen_, Oct 22 2022 %E A357950 a(19)-a(35) from _Bert Dobbelaere_, Oct 30 2022 %E A357950 Corrected a(23), a(25), a(26) and a(34) by _Bert Dobbelaere_, Nov 11 2022