cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357950 Maximum period of an elementary cellular automaton in a cyclic universe of width n.

This page as a plain text file.
%I A357950 #23 Nov 11 2022 07:04:50
%S A357950 2,2,6,8,30,18,126,40,504,430,979,240,1105,2198,6820,6016,78812,7812,
%T A357950 183920,142580,352884,122870,3459591,421188,10828525,334308,81688176,
%U A357950 989212,463347935,5921860,1211061438,26636800,3315517623,187950912,24752893585
%N A357950 Maximum period of an elementary cellular automaton in a cyclic universe of width n.
%H A357950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>.
%H A357950 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elementary_cellular_automaton">Elementary cellular automaton</a>.
%H A357950 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A357950 a(n) >= A334499(n). Equality holds (i.e., the maximum period can be achieved with a single cell initially on) for all n <= 35, except n = 12, 13, 23, 24, 25, 26, 28, 34.
%F A357950 Trivially a(n) <= 2^n. - _Charles R Greathouse IV_, Nov 09 2022
%e A357950 Examples of rules and initial states that give the maximum period:
%e A357950    n   a(n) rule     initial state
%e A357950   --------------------------------
%e A357950    1     2    1                  0
%e A357950    2     2    1                 00
%e A357950    3     6   14                001
%e A357950    4     8    3               0001
%e A357950    5    30   45              00001
%e A357950    6    18   45             000001
%e A357950    7   126   45            0000001
%e A357950    8    40   30           00000001
%e A357950    9   504   45          000000001
%e A357950   10   430   45         0000000001
%e A357950   11   979   45        00000000001
%e A357950   12   240   45       000000100001
%e A357950   13  1105   45      0000000001011
%e A357950   14  2198   45     00000000000001
%e A357950   15  6820   75    000000000000001
%e A357950   16  6016   30   0000000000000001
%e A357950   17 78812   45  00000000000000001
%e A357950   18  7812   75 000000000000000001
%Y A357950 Cf. A334499.
%K A357950 nonn
%O A357950 1,1
%A A357950 _Pontus von Brömssen_, Oct 22 2022
%E A357950 a(19)-a(35) from _Bert Dobbelaere_, Oct 30 2022
%E A357950 Corrected a(23), a(25), a(26) and a(34) by _Bert Dobbelaere_, Nov 11 2022