cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357977 Replace prime(k) with prime(A000041(k)) in the prime factorization of n.

This page as a plain text file.
%I A357977 #19 Oct 04 2024 08:51:33
%S A357977 1,2,3,4,5,6,11,8,9,10,17,12,31,22,15,16,47,18,79,20,33,34,113,24,25,
%T A357977 62,27,44,181,30,263,32,51,94,55,36,389,158,93,40,547,66,761,68,45,
%U A357977 226,1049,48,121,50,141,124,1453,54,85,88,237,362,1951,60,2659,526
%N A357977 Replace prime(k) with prime(A000041(k)) in the prime factorization of n.
%C A357977 In the definition, taking A000041(k) instead of prime(A000041(k)) gives A299200.
%e A357977 We have 35 = prime(3) * prime(4), so a(35) = prime(A000041(3)) * prime(A000041(4)) = prime(3) * prime(5) = 55.
%t A357977 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A357977 mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
%t A357977 Array[mtf[PartitionsP],100]
%o A357977 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(numbpart(primepi(f[k,1])))); factorback(f); \\ _Michel Marcus_, Oct 25 2022
%Y A357977 Applying the same transformation again gives A357979.
%Y A357977 The strict version is A357978.
%Y A357977 Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
%Y A357977 A000040 lists the primes.
%Y A357977 A056239 adds up prime indices, row-sums of A112798.
%Y A357977 Cf. A000041, A000720, A003964, A063834, A076610, A215366, A296150, A299201, A299202, A357975, A357983.
%K A357977 nonn,mult
%O A357977 1,2
%A A357977 _Gus Wiseman_, Oct 23 2022