cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357978 Replace prime(k) with prime(A000009(k)) in the prime factorization of n.

This page as a plain text file.
%I A357978 #13 Oct 04 2024 08:51:25
%S A357978 1,2,2,4,3,4,3,8,4,6,5,8,7,6,6,16,11,8,13,12,6,10,19,16,9,14,8,12,29,
%T A357978 12,37,32,10,22,9,16,47,26,14,24,61,12,79,20,12,38,103,32,9,18,22,28,
%U A357978 131,16,15,24,26,58,163,24,199,74,12,64,21,20,251,44,38
%N A357978 Replace prime(k) with prime(A000009(k)) in the prime factorization of n.
%C A357978 In the definition, taking A000009(k) instead of prime(A000009(k)) gives A357982.
%e A357978 We have 90 = prime(1) * prime(2)^2 * prime(3), so a(90) = prime(1) * prime(1)^2 * prime(2) = 24.
%t A357978 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A357978 mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
%t A357978 Array[mtf[PartitionsQ],100]
%o A357978 (PARI) f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009
%o A357978 a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(f9(primepi(f[k,1])))); factorback(f); \\ _Michel Marcus_, Oct 25 2022
%Y A357978 The non-strict version is A357977.
%Y A357978 Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
%Y A357978 A000040 lists the primes.
%Y A357978 A056239 adds up prime indices, row-sums of A112798.
%Y A357978 Cf. A000041, A000720, A003964, A063834, A076610, A215366, A296150, A299201, A299202, A357975, A357979, A357983.
%K A357978 nonn,mult
%O A357978 1,2
%A A357978 _Gus Wiseman_, Oct 24 2022