This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357978 #13 Oct 04 2024 08:51:25 %S A357978 1,2,2,4,3,4,3,8,4,6,5,8,7,6,6,16,11,8,13,12,6,10,19,16,9,14,8,12,29, %T A357978 12,37,32,10,22,9,16,47,26,14,24,61,12,79,20,12,38,103,32,9,18,22,28, %U A357978 131,16,15,24,26,58,163,24,199,74,12,64,21,20,251,44,38 %N A357978 Replace prime(k) with prime(A000009(k)) in the prime factorization of n. %C A357978 In the definition, taking A000009(k) instead of prime(A000009(k)) gives A357982. %e A357978 We have 90 = prime(1) * prime(2)^2 * prime(3), so a(90) = prime(1) * prime(1)^2 * prime(2) = 24. %t A357978 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357978 mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}]; %t A357978 Array[mtf[PartitionsQ],100] %o A357978 (PARI) f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009 %o A357978 a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(f9(primepi(f[k,1])))); factorback(f); \\ _Michel Marcus_, Oct 25 2022 %Y A357978 The non-strict version is A357977. %Y A357978 Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980. %Y A357978 A000040 lists the primes. %Y A357978 A056239 adds up prime indices, row-sums of A112798. %Y A357978 Cf. A000041, A000720, A003964, A063834, A076610, A215366, A296150, A299201, A299202, A357975, A357979, A357983. %K A357978 nonn,mult %O A357978 1,2 %A A357978 _Gus Wiseman_, Oct 24 2022