cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357982 Replace prime(k) with A000009(k) in the prime factorization of n.

This page as a plain text file.
%I A357982 #19 Oct 04 2024 08:51:16
%S A357982 1,1,1,1,2,1,2,1,1,2,3,1,4,2,2,1,5,1,6,2,2,3,8,1,4,4,1,2,10,2,12,1,3,
%T A357982 5,4,1,15,6,4,2,18,2,22,3,2,8,27,1,4,4,5,4,32,1,6,2,6,10,38,2,46,12,2,
%U A357982 1,8,3,54,5,8,4,64,1,76,15,4,6,6,4,89,2,1
%N A357982 Replace prime(k) with A000009(k) in the prime factorization of n.
%C A357982 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. This sequence gives the number of ways to choose a strict partition of each prime index of n.
%C A357982 The indices i, where a(i) = 1, form A003586, and the indices j, where a(j) > 1, form A059485. - _Ivan N. Ianakiev_, Oct 27 2022
%e A357982 The a(121) = 9 twice-partitions are: (5)(5), (5)(41), (5)(32), (41)(5), (41)(41), (41)(32), (32)(5), (32)(41), (32)(32).
%t A357982 Table[Times@@Cases[FactorInteger[n],{p_,k_}:>PartitionsQ[PrimePi[p]]^k],{n,100}]
%o A357982 (PARI) f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009
%o A357982 a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = f9(primepi(f[k,1]))); factorback(f); \\ _Michel Marcus_, Oct 26 2022
%Y A357982 Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
%Y A357982 The non-strict version is A299200.
%Y A357982 A horizontal version is A357978, non-strict A357977.
%Y A357982 A000040 lists the primes.
%Y A357982 A056239 adds up prime indices, row-sums of A112798.
%Y A357982 Cf. A000041, A000720, A003964, A063834, A076610, A215366, A273873, A296150, A299201-A299203, A357975, A357979, A357983.
%Y A357982 Cf. A003586, A059485.
%K A357982 nonn,mult
%O A357982 1,5
%A A357982 _Gus Wiseman_, Oct 25 2022