cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357990 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1).

This page as a plain text file.
%I A357990 #38 May 27 2024 23:15:12
%S A357990 1,1,1,3,1,1,1,5,1,1,7,1,7,1,1,3,19,1,9,1,1,7,5,37,1,11,1,1,1,11,7,61,
%T A357990 1,13,1,1,15,1,15,9,91,1,15,1,1,7,65,1,19,11,127,1,17,1,1,17,19,175,1,
%U A357990 23,13,169,1,19,1,1,3,43,37,369,1,27,15,217,1,21
%N A357990 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = 1 for k > 0 and where T(n, k) = R(n, k+1) - R(n, k) for n > 0, k > 0. Here R(n, k) = T(A053645(n), k)*k^(A290255(n) + 1).
%F A357990 Conjecture: T(n, 1) = A329369(n).
%e A357990 Square array begins:
%e A357990    1,  1,   1,   1,   1,    1,    1,    1, ...
%e A357990    1,  1,   1,   1,   1,    1,    1,    1, ...
%e A357990    3,  5,   7,   9,  11,   13,   15,   17, ...
%e A357990    1,  1,   1,   1,   1,    1,    1,    1, ...
%e A357990    7, 19,  37,  61,  91,  127,  169,  217, ...
%e A357990    3,  5,   7,   9,  11,   13,   15,   17, ...
%e A357990    7, 11,  15,  19,  23,   27,   31,   35, ...
%e A357990    1,  1,   1,   1,   1,    1,    1,    1, ...
%e A357990   15, 65, 175, 369, 671, 1105, 1695, 2465, ...
%o A357990 (PARI) R(n,k)=my(L=logint(n, 2), A=n - 2^L); T(A, k)*k^(L - if(A>0, logint(A, 2) + 1) + 1)
%o A357990 T(n,k)=if(n==0, 1, R(n, k+1) - R(n, k))
%o A357990 (PARI) T(n, k) = my(A = 2*n+1, B, C, v1, v2); v1 = []; while(A > 0, B=valuation(A, 2); v1=concat(v1, B+1); A \= 2^(B+1)); v1 = Vecrev(v1); A = #v1; v2 = vector(A, i, 1); for(i=1, A-1, B = A-i; for(j=1, B, C = B-j+k+1; v2[j] = v2[j]*C^v1[B] - v2[j+1]*(C-1)^v1[B])); v2[1] \\ _Mikhail Kurkov_, Apr 30 2024
%Y A357990 Cf. A000120, A053645, A290255, A329369.
%K A357990 nonn,base,tabl
%O A357990 0,4
%A A357990 _Mikhail Kurkov_, Nov 20 2022