A357992 a(1)=1,a(2)=2,a(3)=3. Thereafter, if there are prime divisors p of a(n-2) which do not divide a(n-1), a(n) is the least novel multiple of any such p. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-2).
1, 2, 3, 4, 6, 8, 9, 10, 12, 5, 14, 15, 7, 18, 21, 16, 24, 20, 27, 22, 30, 11, 25, 33, 35, 36, 28, 39, 26, 42, 13, 32, 52, 34, 65, 17, 40, 51, 38, 45, 19, 48, 57, 44, 54, 55, 46, 50, 23, 56, 69, 49, 60, 63, 58, 66, 29, 62, 87, 31, 72, 93, 64, 75, 68, 70, 85, 74
Offset: 1
Keywords
Examples
With a(2)=2, and a(3)=3, a(4) must be 4, the least unused multiple of 2. Likewise, with a(3),a(4) = 3,4 a(5) must be the 6, the least unused multiple of 3. Since every divisor of 4 also divides 6 a(6) = 8, the least unused multiple of 2, (squarefree kernel of 4). Since a(8),a(9) = 10,12 and 5 is the only prime dividing 10 but not 12, it follows that a(10) = 5.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Scatterplot of a(n), n = 1..2^20.
- Michael De Vlieger, Log-log scatterplot of a(n), n = 1..2^12 labeling records in red, local minima in blue, highlighting primes in green and other prime powers in gold.
Programs
-
Mathematica
Block[{a, c, f, g, k, m, q, nn}, nn = 68; c[] = False; q[] = 1; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; q[2] = 2; Do[m = FactorInteger[a[n - 2]][[All, 1]]; f = Select[m, CoprimeQ[#, a[n - 1]] &]; If[Length[f] == 0, While[Set[k, #* q[#]]; c[k], q[#]++] &[Times @@ m], Set[{k, q[#1]}, {#2, #2/#1}] & @@ First@ MinimalBy[Map[{#, Set[g, q[#]]; While[c[g #], g++]; # g} &, f], Last]]; Set[{a[n], c[k]}, {k, True}], {n, 3, nn}]; Array[a, nn]] (* Michael De Vlieger, Oct 23 2022 *)
Extensions
More terms from Michael De Vlieger, Oct 23 2022
Comments