A357994 a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the greatest least multiple of any such p which has not already occurred. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). (see comments).
1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 25, 30, 27, 33, 11, 22, 26, 13, 39, 36, 28, 35, 40, 32, 34, 17, 51, 42, 49, 56, 38, 19, 57, 45, 50, 44, 55, 60, 48, 54, 66, 77, 63, 69, 23, 46, 52, 65, 70, 84, 72, 78, 91, 98, 58, 29, 87, 75, 80, 62
Offset: 1
Examples
a(1),a(2)=1,2 and 2 is the only prime dividing 2 which does not divide 1, therefore a(3)=4, the least multiple of 2 which has not occurred already. In this case (as in all terms up to and including a(20)), "Max" gives the same term as "Min".
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Scatterplot of a(n), n = 1..120, showing primes p in red, 2p in blue, and 3p in green, for comparison to A064413.
- Michael De Vlieger, Scatterplot of a(n), n = 1..2^20.
- Michael De Vlieger, Log-log scatterplot of a(n), n = 1..2^14, labeling records in red and local minima in blue, highlighting primes in green, prime squares in light blue, and other prime powers in gold. Demonstrates delayed 17^2 and 19^2, early records such as a(268) = 455.
Programs
-
Mathematica
Block[{a, c, d, f, g, k, q, u, nn}, nn = 68; c[] = False; q[] = 1; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; q[2] = 2; Do[m = FactorInteger[a[n - 1]][[All, 1]]; f = Select[m, CoprimeQ[#, a[n - 2]] &]; If[Length[f] == 0, While[Set[k, # q[#]]; c[k], q[#]++] &[Times @@ m], Set[{k, q[#1]}, {#2, #2/#1}] & @@ First@ MaximalBy[Map[{#, Set[g, q[#]]; While[c[g #], g++]; # g} &, f], Last] ]; Set[{a[n], c[k]}, {k, True}], {n, 3, nn}]; Array[a, nn] ] (* Michael De Vlieger, Oct 23 2022 *)
Extensions
More terms by Michael De Vlieger, Oct 23 2022
Comments