cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357994 a(1)=1, a(2)=2. Thereafter, if there are prime divisors p of a(n-1) which do not divide a(n-2), a(n) is the greatest least multiple of any such p which has not already occurred. Otherwise a(n) is the least novel multiple of the squarefree kernel of a(n-1). (see comments).

Original entry on oeis.org

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 25, 30, 27, 33, 11, 22, 26, 13, 39, 36, 28, 35, 40, 32, 34, 17, 51, 42, 49, 56, 38, 19, 57, 45, 50, 44, 55, 60, 48, 54, 66, 77, 63, 69, 23, 46, 52, 65, 70, 84, 72, 78, 91, 98, 58, 29, 87, 75, 80, 62
Offset: 1

Views

Author

David James Sycamore, Oct 23 2022

Keywords

Comments

In other words, if a(n-1) has k prime divisors p_j; 1 <= j <= k which do not divide a(n-2), where 1 <= k <= omega(a(n-1)), and if m_j*p_j is the least multiple of p_j which is not already a term, then a(n) = Max{m_j*p_j; 1 <= j <= k}. Otherwise every prime divisor of a(n-1) also divides a(n-2), in which case a(n) is the least multiple of the squarefree kernel of a(n-1) which has not already occurred.
Companion to A357963, (which uses "Min" rather than "Max" in selection of a(n)). The first departure from A357963 occurs at a(21) because a(19),a(20) = 25,30, and 30 has two divisors (2,3) which do not divide 25. Of these the least multiples not occurring already are 22, and 27 respectively. At this point in A357963 22 is the chosen term, whereas here a(21) = 27. This has the effect of temporarily reversing (for the next prime = 11) the normal way primes seem to arrive in this sequence (2p,p,3p, as in A064413). Thus we see 30,27,33,11,22 (3p,p,2p). This may happen elsewhere in the data, consequent to choice of "Max" over "Min".
Conjecture: Permutation of the positive integers; primes being in natural order, and the slowest numbers to appear (as in A352187).

Examples

			a(1),a(2)=1,2 and 2 is the only prime dividing 2 which does not divide 1, therefore a(3)=4, the least multiple of 2 which has not occurred already. In this case (as in all terms up to and including a(20)), "Max" gives the same term as "Min".
		

Crossrefs

Programs

  • Mathematica
    Block[{a, c, d, f, g, k, q, u, nn}, nn = 68; c[] = False; q[] = 1; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; q[2] = 2; Do[m = FactorInteger[a[n - 1]][[All, 1]]; f = Select[m, CoprimeQ[#, a[n - 2]] &]; If[Length[f] == 0, While[Set[k, # q[#]]; c[k], q[#]++] &[Times @@ m], Set[{k, q[#1]}, {#2, #2/#1}] & @@ First@ MaximalBy[Map[{#, Set[g, q[#]]; While[c[g #], g++]; # g} &, f], Last] ]; Set[{a[n], c[k]}, {k, True}], {n, 3, nn}]; Array[a, nn] ] (* Michael De Vlieger, Oct 23 2022 *)

Extensions

More terms by Michael De Vlieger, Oct 23 2022