cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357995 Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2.

This page as a plain text file.
%I A357995 #13 Oct 30 2022 10:00:57
%S A357995 1,5,11,13,11,20,31,24,27,29,43,37,49,52,63,58,69,53,75,61,65,84,95,
%T A357995 98,85,96,107,115,88,121,127,122,130,136,139,134,145,148,159,151,154,
%U A357995 157,171,174,169,180,191,194,178,181,203,198,201,212,223,210,221,232,235,214
%N A357995 Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2.
%H A357995 Feihu Liu and Guoce Xin, <a href="https://arxiv.org/abs/2210.02722">On Frobenius Formulas of Power Sequences</a>, arXiv:2210.02722 [math.CO], 2022. See Table 1 p. 26.
%o A357995 (Python)
%o A357995 def A357995(n):
%o A357995     a, b = set([0]), set(range(1,n**2))
%o A357995     for m in [n+k**2 for k in range(n+1)]:
%o A357995         d=m
%o A357995         while d < n**2:
%o A357995             c2 = set([x for x in b if x-d in a])
%o A357995             a |= c2 ; b -= c2 ; d*=2
%o A357995     return max(b) # _Bert Dobbelaere_, Oct 30 2022
%Y A357995 Cf. A059100, A117950, A087475, A117951, A114949, A117619, A189833, A189834,
%K A357995 nonn
%O A357995 2,2
%A A357995 _Michel Marcus_, Oct 23 2022
%E A357995 More terms from _Bert Dobbelaere_, Oct 30 2022