This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358001 #34 Dec 08 2022 08:56:17 %S A358001 1,1024,4096,59049,65536,262144,531441,4194304,9765625,43046721, %T A358001 60466176,241864704,244140625,268435456,282475249,387420489,544195584, %U A358001 1073741824,2176782336,3869835264,10000000000,13841287201,15479341056,25937424601,31381059609,34828517376 %N A358001 Numbers whose number of divisors is coprime to 210. %C A358001 210 is the product of the smallest 4 primes. %C A358001 Numbers k such that gcd(d(k), 210) = 1, where d(k) is the number of divisors of k (A000005). %C A358001 The square roots of terms are in A001694. %H A358001 Michael De Vlieger, <a href="/A358001/b358001.txt">Table of n, a(n) for n = 1..5000</a> %F A358001 a(n) = A358250(n)^2. %F A358001 Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^k)/(p^210-1) = 1.001258995976... . - _Amiram Eldar_, Dec 06 2022 %t A358001 With[{nn = 200000}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]^2] %Y A358001 Subsequence of other sequences of numbers k such that gcd(d(k), m) = 1: A000290 (m=2), A336590 (m=3), A352475 (m=6), A354178 (m=30). %Y A358001 Cf. A000005, A001694, A008364. %K A358001 nonn %O A358001 1,2 %A A358001 _Michael De Vlieger_, Dec 03 2022