This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358028 #66 Oct 06 2024 12:24:21 %S A358028 2,29,67,107,157,257,311,367,541,599,709,769,829,967,1021,1549,1741, %T A358028 1811,1879,1973,2609,2677,3019,3541,3677,4051,4217,4271,4517,4597, %U A358028 4663,4931,5227,5303,5399,5449,5623,5683,5839,6079,6229,6301,6361,6451,6949,7253,7351,7477,7537,7589,7673 %N A358028 Primes p = prime(9*t+1) such that the 9 consecutive primes prime(9*t+1) .. prime(9*t+9) arranged in a 3 X 3 array have at least 2 equal sums along the rows, columns or main diagonals. %C A358028 Primes are taken in successive blocks of 9 and arranged, for t>=0, %C A358028 | prime(9*t+1) | prime(9*t+2) | prime(9*t+3) | %C A358028 | prime(9*t+4) | prime(9*t+5) | prime(9*t+6) | %C A358028 | prime(9*t+7) | prime(9*t+8) | prime(9*t+9) | %C A358028 There are 8 lines altogether: 3 rows, 3 columns, and 2 main diagonals. %C A358028 The sum of the first row is never duplicated since any other line has a greater sum. %C A358028 The sum of the last row is never duplicated since any other line has a smaller sum. %e A358028 2 is a term since its block of 9 primes is %e A358028 | 2 | 3 | 5 | %e A358028 | 7 | 11 | 13 | %e A358028 | 17 | 19 | 23 | %e A358028 which has among its lines (3 + 11 + 19) = (17 + 11 + 5). %e A358028 67 is a term since its block of 9 primes (the 3rd block) is 67..103, %e A358028 | 67 | 71 | 73 | %e A358028 | 79 | 83 | 89 | %e A358028 | 97 | 101| 103| %e A358028 which has 67+83+103 = 97+83+73. %t A358028 a = {} %t A358028 row = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}; %t A358028 col = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; %t A358028 dia = {{1, 3}, {5, 5}, {9, 7}}; %t A358028 Duplicates[l_] := %t A358028 Block[{i}, i[n_] := (i[n] = n; Unevaluated@Sequence[]); i /@ l] %t A358028 Do[If[Duplicates[ %t A358028 Flatten[{Total[Prime[row + 9 n]], Total[Prime[col + 9 n]], %t A358028 Total[Prime[dia + 9 n]]}]] != {}, %t A358028 AppendTo[a, Prime[9 n + 1]]], {n, 0, 110}] %t A358028 a (* _Gerry Martens_, Nov 12 2022 *) %Y A358028 Cf. A105093. %Y A358028 Subsequence of A031918 (by definition). %K A358028 nonn %O A358028 1,1 %A A358028 _Saish S. Kambali_, Nov 12 2022 %E A358028 More terms from _Gerry Martens_, Nov 12 2022