This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358031 #18 Jan 25 2024 19:10:09 %S A358031 1,2,8,52,450,4878,63474,963744,16724016,326497632,7082393136, %T A358031 168995017200,4399028766192,124051494462816,3767315220903072, %U A358031 122581568808533760,4254486275273419008,156890997080103149568,6125936704495619486976,252480641031903073955328 %N A358031 Expansion of e.g.f. (1 - log(1-x))/(1 + log(1-x) * (1 - log(1-x))). %F A358031 a(n) = Sum_{k=0..n} k! * Fibonacci(k+2) * |Stirling1(n,k)|. %F A358031 a(n) = A354013(n) + A354018(n). %p A358031 f:= proc(n) local k; add(k!*combinat:-fibonacci(k+2)*abs(Stirling1(n,k)),k=0..n) end proc: %p A358031 map(f, [$0..30]); # _Robert Israel_, Oct 25 2022 %t A358031 With[{nn=20},CoefficientList[Series[(1-Log[1-x])/(1+Log[1-x](1-Log[1-x])),{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Jan 25 2024 *) %o A358031 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-x))/(1+log(1-x)*(1-log(1-x))))) %o A358031 (PARI) a(n) = sum(k=0, n, k!*fibonacci(k+2)*abs(stirling(n, k, 1))); %Y A358031 Cf. A354013, A354018. %Y A358031 Cf. A000557, A358032. %K A358031 nonn %O A358031 0,2 %A A358031 _Seiichi Manyama_, Oct 25 2022