This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358033 #35 Oct 27 2022 12:49:23 %S A358033 2,3,4,5,6,9,12,15,20,25,30,45,60,75,100,125,150,225,300,375,500,625, %T A358033 750,1125,1500,1875,2500,3125,3750,5625,7500,9375,12500,15625,18750, %U A358033 28125,37500,46875,62500,78125,93750,140625,187500,234375,312500,390625,468750 %N A358033 a(1) = 2; a(n) - a(n-1) = A093803(a(n-1)), the largest odd proper divisor of a(n-1). %F A358033 a(n+1) - a(n) = A056487(floor((n-2)/3)), for n > 2. This works because A056487(n+3) = A056487(n+2)*A056487(n+1)/A056487(n). - _Thomas Scheuerle_, Oct 26 2022 %e A358033 a(1) = 2. %e A358033 a(2) = 3. The only proper divisor of 2 is 1; 2 + 1 = 3. %e A358033 a(3) = 4. The only proper divisor of 3 is 1; 3 + 1 = 4. %e A358033 ... %e A358033 a(8) = 15. %e A358033 a(9) = 20. Proper divisors of 15 are 1, 3, 5; largest odd proper divisor = 5; 15 + 5 = 20. %o A358033 (Python) %o A358033 a_n = 2 %o A358033 result = [2] %o A358033 for n in range(30): %o A358033 temp = [] %o A358033 for i in range(1, a_n): %o A358033 if a_n % i == 0: %o A358033 if (i % 2 != 0) and (i != a_n): %o A358033 temp.append(i) %o A358033 result.append(a_n + max(temp)) %o A358033 a_n = a_n + max(temp) %o A358033 print(result) %o A358033 (PARI) f(n) = my(x=if(n==1, 1, n/factor(n)[1, 1])); x >> valuation(x, 2); \\ _Michel Marcus_, Oct 26 2022 %o A358033 lista(nn) = my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = va[n-1] + f(va[n-1]);); va; \\ _Michel Marcus_, Oct 26 2022 %Y A358033 Cf. A093803, A000792 (with largest proper divisor instead). %Y A358033 Cf. A027750, A038754, A056487, A356639. %K A358033 nonn,easy %O A358033 1,1 %A A358033 _Eric Angelini_ and _Gavin Lupo_, Oct 25 2022