cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358041 The number of maximal antichains in the lattice of set partitions of an n-element set.

This page as a plain text file.
%I A358041 #22 Aug 20 2023 10:50:04
%S A358041 1,2,3,32,14094
%N A358041 The number of maximal antichains in the lattice of set partitions of an n-element set.
%C A358041 Also similar to the number of maximal antichains in the Boolean lattice.
%H A358041 R. L. Graham, <a href="https://doi.org/10.1007/BF03023067">Maximum antichains in the partition lattice</a>, The Mathematical Intelligencer, 1 (1978), 84-86.
%H A358041 Dmitry I. Ignatov, <a href="https://doi.org/10.1007/978-3-031-40960-8_6">A Note on the Number of (Maximal) Antichains in the Lattice of Set Partitions</a>. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham.
%H A358041 Dmitry I. Ignatov, <a href="https://github.com/dimachine/SetPartAnti/">Supporting iPython code and input files for counting (maximal) antichains of the set partition lattice up to n=5</a>, Github repository.
%e A358041 For n = 3 the a(3) = 3 maximal antichains are: {1|2|3}, {1|23, 12|3, 13|2}, and {123}. We use the typical shorthand notation for set partitions where 1|23 denotes {{1}, {2,3}}.
%Y A358041 Cf. A302250 (number of antichains in the lattice of set partitions).
%Y A358041 Cf. A326358 (number of maximal antichains in the Boolean lattice).
%K A358041 nonn,hard,more
%O A358041 1,2
%A A358041 _Dmitry I. Ignatov_, Oct 29 2022