cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A358083 Sum of square end-to-end displacements over all n-step self-avoiding walks of A358046.

Original entry on oeis.org

4, 16, 128, 448, 2256, 5376, 29424, 69888, 302568, 741376, 3026448, 7216896, 29268352, 65785216, 263892736, 591065568, 2279452040, 5195776064, 19324558176, 44442289024, 161417689504, 371206519136, 1328055630144, 3044451252064, 10774811055304, 24625495784320, 86363375773808, 197092099990080
Offset: 1

Views

Author

Scott R. Shannon, Oct 30 2022

Keywords

Comments

See A358046 for further details.

Examples

			a(3) = 128 as, in the first quadrant, the four 3-step SAWs that have the first and last visited lattice point being mutually visible are:
.
                  X
                  |
     X---.        .          .---X           X
         |        |          |               |
     X---.    X---.      X---.       X---.---.
.
The sum of square end-to-end displacements of these four walks is 1 + 5 + 5 + 5 = 16. They can be walked in eight different ways on a square lattice thus a(3) = 16 * 8 = 128.
		

Crossrefs

A358036 Number of n-step self-avoiding walks on a 2D square lattice where the first visited lattice point is directly visible from the last visited lattice point, and were both the visited lattice points and the path between these points are considered when determining the visibility of points.

Original entry on oeis.org

0, 8, 24, 48, 144, 336, 992, 2344, 6760, 16336, 46432, 113904, 320864, 793136, 2222824, 5524040, 15409704, 38493560, 106895408, 268253720, 742053704, 1869175480, 5154271008, 13022699248, 35816428904, 90722285632, 248960813992, 631978627880, 1730939615552
Offset: 1

Views

Author

Scott R. Shannon, Oct 26 2022

Keywords

Comments

Consider a self-avoiding walk on a 2D square lattice where two visited lattice points are considered to be visible from each other if, on drawing a line directly between these two points, the line neither crosses another lattice point which has been visited by previous steps of the walk, nor crosses any line directly connecting two consecutively visited lattice points that forms a part of the path of the walk. This sequence lists the number of n-step self-avoiding walks for which the first visited lattice point of the walk is directly visible from the last visited point. See the examples below.
For the 29-step walk the ratio of the number of end-to-end visible walks to all walks is a(29)/A001411(29) = 1730939615552/6279396229332 ~ 0.276. The value and behavior of this ratio as n -> infinity is unknown.
See A358046 for the number of walks when only the visited lattice points are considered when determining point visibility.

Examples

			a(1) = 0 as after one step in any of the four available directions the first and last point of the walk are directly connected by a line forming the path, so are not considered mutually visible.
a(2) = 8 as there are 4*3 = 12 2-step SAWs, but the four walks which consist of two steps directly along the axes have a visited lattice point directly between the first and last points of the walk, so those two point are not visible from each other. Thus a(2) = 12 - 4 = 8.
a(3) = 24 as there are thirty-six 3-step SAWs which include four walks directly along the axes which have a first point that is not visible from the last. In the first quadrant there is one other walk whose second-step path is intersected by the line between the first and last points of the walk. This walk is:
.
       .---X
       |
   X---.
.
where the first and last points are shown as 'X'. The above walk can be walked in eight ways on the 2D square lattice, so the total number of walks where the first point is visible from the last is 36 - 4 - 1*8 = 36 - 12 = 24.
a(4) = 48 as there are one hundred 4-step SAWs which include four walks directly along the axes which have a first point that is not visible from the last. In the first quadrant there are six other walks which have either previously visited points directly on the line between the first and last points of the walk, or in which this line intersects the path of previous steps. These walks are:
.
   X           .---X        X
   |           |            |
   @---.       @        @---.      .---.---X     .---.           .---X
       |       |        |          |             |   |           |
   X---.   X---.    X---.      X---.         X---@   X   X---.---.
.
where the visited points on the line between the first and last points are shown as '@'. Each of the above walks can be walked in eight ways on the 2D square lattice, so the total number of walks where the first point is visible from the last is 100 - 4 - 6*8 = 100 - 52 = 48.
		

Crossrefs

A359073 Sum of square end-to-end displacements over all n-step self-avoiding walks of A359709.

Original entry on oeis.org

0, 4, 16, 44, 160, 556, 1744, 12252, 15840, 98876, 138160, 709900, 1155616, 5098260, 11820656, 37085908, 111147104, 281078764, 932893104, 2255139900, 7295211968, 18928121236, 54864568720, 160016686500, 404167501888, 1331607134172, 2945597090384, 10805511468852, 21448743511648
Offset: 0

Views

Author

Scott R. Shannon, Jan 12 2023

Keywords

Crossrefs

A359709 Number of n-step self-avoiding walks on a 2D square lattice whose end-to-end distance is an integer.

Original entry on oeis.org

1, 4, 4, 12, 28, 76, 164, 732, 1044, 4924, 6724, 30636, 43972, 190516, 313996, 1197908, 2284260, 7678188, 16257604, 50524252, 113052396, 341811828, 773714436, 2358452388, 5245994292, 16447462492, 35395532236, 115129727188, 238542983748, 804980005276
Offset: 0

Views

Author

Scott R. Shannon, Jan 12 2023

Keywords

Comments

The walks counted are all those directly along and x or y axes, and all walks whose final (|x|,|y|) lattice point are the two legs of a Pythagorean triple.

Examples

			a(3) = 12 as, in the first quadrant, there is one 3-step SAW whose end-to-end distance is an integer (1 unit):
.
     X---.
         |
     X---.
.
This can be walked in 8 different ways on a 2D square lattice. There are also the four walks directly along the x and y axes, giving a total of 8 + 4 = 12 walks.
		

Crossrefs

A368614 Number of n-step self-avoiding walks on a 2D square lattice where each visited lattice point is either a neighbor of the first visited lattice point, else the first visited lattice point is directly visible (cf. A358036) from the lattice point when it is first visited.

Original entry on oeis.org

4, 8, 16, 24, 48, 80, 168, 296, 624, 1144, 2424, 4552, 9680, 18480, 39368, 76128, 162376, 317288, 677624, 1335688, 2856536, 5672576, 12149080, 24280768, 52079424, 104665200, 224825088, 454047672, 976721744, 1981083216, 4267578200, 8689274768, 18743542208, 38295782400, 82715689712
Offset: 1

Views

Author

Scott R. Shannon, Dec 31 2023

Keywords

Comments

The sequence counts the number of SAWs on the square lattice where, after the first step, all subsequent visited lattice points must be such that the first lattice point is directly visible from it when it is first visited - see A358036 for the definition of visibility.

Examples

			a(4) = 24. For walks with a second step in the first quadrant, there are three 4-step saws where the first lattice point is either a neighbor or directly visible from each point as it is first visited. These are:
.
  .---.---.   .---.     .
          |       |     |
      X---.       .     .
                  |     |
              X---.     .
                        |
                    X---.
.
where 'X' marks the position of the first lattice point. These three walks can be taken in eight ways on the 2D square lattice, so the total number of walks is 3 * 8 = 24.
		

Crossrefs

Showing 1-5 of 5 results.