This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358055 #13 Mar 12 2024 13:37:09 %S A358055 1,2,5,8,14,20,32,38,59,59,63,116,122,158,158,218,278,278,402,548,642, %T A358055 642,642,642,642,1062,1062,1668,2474,2690,2690,2690,2690,2690,3170, %U A358055 3170,3170,3170,3170,3170,3170,9260,9260,9260,9788,9788,11772,11942,11942,11942,11942,11942 %N A358055 a(n) is the least m such that A358052(m,k) = n for some k. %C A358055 a(n) is the least m such that iteration of the map x -> floor(m/x) + (m mod x), starting at some k in [1,m], produces n distinct values before repeating. %e A358055 a(4) = 8 because A358052(8,6) = 4 and this is the first appearance of 4 in A358052. %e A358055 Thus the map x -> floor(8/x) + (8 mod x) starting at 6 produces 4 distinct values before repeating: 6 -> 3 -> 4 -> 2 -> 4. %p A358055 f:= proc(n, k) local x, S, count; %p A358055 S:= {k}; %p A358055 x:= k; %p A358055 for count from 1 do %p A358055 x:= iquo(n, x) + irem(n, x); %p A358055 if member(x, S) then return count fi; %p A358055 S:= S union {x}; %p A358055 od %p A358055 end proc: %p A358055 V:= Vector(50): count:= 0: %p A358055 for n from 1 while count < 50 do %p A358055 for k from 1 to n do %p A358055 v:= f(n,k); %p A358055 if v <= 50 and V[v] = 0 then %p A358055 V[v]:= n; count:= count+1; %p A358055 fi %p A358055 od od: %p A358055 convert(V,list); %t A358055 f[n_, k_] := Module[{x, S, count}, S = {k}; x = k; For[count = 1, True, count++, x = Quotient[n, x] + Mod[n, x]; If[MemberQ[S, x], Return@count]; S = S~Union~{x}]]; %t A358055 V = Table[0, {vmax = 40}]; count = 0; %t A358055 For[n = 1, count < vmax, n++, For[k = 1, k <= n, k++, v = f[n, k]; If[v <= vmax && V[[v]] == 0, Print[n]; V[[v]] = n; count++]]]; %t A358055 V (* _Jean-François Alcover_, Mar 12 2024, after Maple code *) %Y A358055 Cf. A234575, A358052. %K A358055 nonn %O A358055 1,2 %A A358055 _J. M. Bergot_ and _Robert Israel_, Oct 27 2022