cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358061 a(n) = phi(n) mod tau(n).

This page as a plain text file.
%I A358061 #18 Oct 30 2022 03:52:45
%S A358061 0,1,0,2,0,2,0,0,0,0,0,4,0,2,0,3,0,0,0,2,0,2,0,0,2,0,2,0,0,0,0,4,0,0,
%T A358061 0,3,0,2,0,0,0,4,0,2,0,2,0,6,0,2,0,0,0,2,0,0,0,0,0,4,0,2,0,4,0,4,0,2,
%U A358061 0,0,0,0,0,0,4,0,0,0,0,2,4,0,0,0,0,2,0,0,0,0
%N A358061 a(n) = phi(n) mod tau(n).
%C A358061 a(n) > 0 for n in A015733, a(n) = 0 for n in A020491.
%F A358061 a(n) = A000010(n) mod A000005(n).
%e A358061 For n = 4; a(4) = A000010(4) mod A000005(4) = 2 mod 3 = 2.
%t A358061 a[n_] := Mod[EulerPhi[n], DivisorSigma[0, n]]; Array[a, 100] (* _Amiram Eldar_, Oct 28 2022 *)
%o A358061 (Python)
%o A358061 from math import prod
%o A358061 from sympy import factorint
%o A358061 def A358061(n):
%o A358061     f = factorint(n).items()
%o A358061     d = prod(e+1 for p, e in f)
%o A358061     return prod(pow(p,e-1,d)*((p-1)%d) for p, e in f) % d # _Chai Wah Wu_, Oct 29 2022
%Y A358061 Cf. A000005 (tau), A000010 (phi), A015733, A020491.
%K A358061 nonn
%O A358061 1,4
%A A358061 _Ctibor O. Zizka_, Oct 28 2022