This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358070 #22 Jan 04 2023 18:47:13 %S A358070 1,1,2,6,12,30,30,84,120,210,420,420,840,1260,2310,4620,5460,5460, %T A358070 13860,13860,27720,32760,60060,60060,120120,180180,180180,360360, %U A358070 360360,510510,1021020,1141140,2042040,3063060,3423420,6126120,6846840,6846840,8953560,12252240 %N A358070 Largest order of element in direct product S_n * S_n where S_n is the symmetric group. %C A358070 Let (P,Q) be two partitions of n and lcm(P) be the LCM of all parts of P, then a(n) = max( lcm(lcm(P), lcm(Q)) ) where the maximum is taken among all pairs (P,Q). - _Joerg Arndt_, Dec 04 2022 %e A358070 From _Joerg Arndt_, Dec 04 2022: (Start) %e A358070 The 15 partitions of 7 are the following: %e A358070 [ #] [ partition ] lcm( parts ) %e A358070 [ 1] [ 1 1 1 1 1 1 1 ] 1 %e A358070 [ 2] [ 1 1 1 1 1 2 ] 2 %e A358070 [ 3] [ 1 1 1 1 3 ] 3 %e A358070 [ 4] [ 1 1 1 2 2 ] 2 %e A358070 [ 5] [ 1 1 1 4 ] 4 %e A358070 [ 6] [ 1 1 2 3 ] 6 %e A358070 [ 7] [ 1 1 5 ] 5 %e A358070 [ 8] [ 1 2 2 2 ] 2 %e A358070 [ 9] [ 1 2 4 ] 4 %e A358070 [10] [ 1 3 3 ] 3 %e A358070 [11] [ 1 6 ] 6 %e A358070 [12] [ 2 2 3 ] 6 %e A358070 [13] [ 2 5 ] 10 %e A358070 [14] [ 3 4 ] 12 %e A358070 [15] [ 7 ] 7 %e A358070 The maximum value attained is 7 * 12, so a(7) = 84. %e A358070 (End) %o A358070 (Python3) %o A358070 x=[{1},{1}] %o A358070 for i in range(2,40): %o A358070 u=[] %o A358070 for j in range(1,i): %o A358070 u.extend([k*j//math.gcd(k,j) for k in x[i-j]]) %o A358070 x.append(set(u)) %o A358070 xx=[set([i*j//math.gcd(i,j) for i in t for j in t]) for t in x] %o A358070 print([max(i) for i in xx][2:]) %Y A358070 Cf. A000793 (largest order of element in S_n). %Y A358070 Cf. A063183. %K A358070 nonn %O A358070 0,3 %A A358070 _Jack Zhang_, Oct 29 2022