A358071 Numbers k that can be written as the sum of a perfect square and a factorial in at least 2 distinct ways.
2, 6, 10, 124, 145, 220, 649, 745, 1081, 1249, 1345, 2929, 3601, 3745, 5065, 5076, 5161, 5209, 5481, 6049, 6196, 6265, 6804, 7249, 7945, 8289, 9529, 11124, 14644, 15649, 17361, 17809, 21169, 22921, 30649, 35316, 40321, 40384, 40720, 40761, 43456, 43569, 43801
Offset: 1
Keywords
Examples
145 = 5^2 + 5! = 11^2 + 4! = 12^2 + 1!.
Links
- Robert Israel, Table of n, a(n) for n = 1..3661
Programs
-
Maple
Nf:= 15: # for terms <= (Nf) + 1! Facts:= [seq(i!, i=1..Nf)]: N:= Facts[-1]+1: R:= 'R': for i from 0 to isqrt(N) do for j from 1 to Nf do v:= Facts[j]+i^2; if v > N then break fi; if not assigned(R[v]) then R[v]:= [i,j] else R[v]:= R[v],[i,j] fi od od: J:= [indices(R)]: sort(map(op, select(t -> nops([R[op(t)]])>=2, J))); # Robert Israel, Aug 08 2025
-
Mathematica
With[{f = Range[8]!}, c[n_] := Count[f, ?(IntegerQ @ Sqrt[n - #] &)]; Select[Range[f[[-1]]], c[#] > 1 &]] (* _Amiram Eldar, Oct 30 2022 *)
Comments