This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358072 #31 Nov 14 2022 20:03:07 %S A358072 1,1,4,28,320,5360,123760,3765440,145951680,7019678400,410164339200, %T A358072 28615175635200,2349290700556800,224201377681881600, %U A358072 24610071925350912000,3078761402543963136000,435446399655217606656000 %N A358072 a(n) is the number of "merger histories" of n elements (see A256006) where at most 3 elements can merge at the same time. %C A358072 Also the number of unordered, leaf-labeled increasing trees on n leaves with maximum node outdegree 3. %H A358072 Johannes Wirtz, <a href="/A358072/b358072.txt">Table of n, a(n) for n = 1..1000</a> %H A358072 Johannes Wirtz, <a href="https://arxiv.org/abs/2211.03632">On the enumeration of leaf-labelled increasing trees with arbitrary node-degree</a>, arXiv:2211.03632 [q-bio.PE], 2022. %F A358072 a(n) = n*(n-1)*((n-2)*a(n-2) + 3*a(n-1))/6 for n >= 3. %F A358072 a(n+1) ~ 2*Pi*exp(-2/3)*Gamma(5/3)^(-1)*n^(2n+8/3)*2^(-n)*exp^(-2n). %F A358072 2*Pi*exp(-2/3)*Gamma(5/3)^(-1) = 3.573427548... %p A358072 a := proc(n) option remember; if n < 2 then return 1 else %p A358072 a(n-2)*binomial(n, 3) + a(n-1)*binomial(n, 2) fi end: %p A358072 seq(a(n), n = 1..17); %Y A358072 Cf. A256006. %K A358072 nonn %O A358072 1,3 %A A358072 _Johannes Wirtz_, Oct 29 2022