This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358091 #9 Oct 28 2022 10:10:29 %S A358091 1,5,-6,16,-60,48,44,-288,660,-440,112,-1056,4032,-7280,4368,272, %T A358091 -3360,17952,-52224,81600,-45696,640,-9792,67200,-267520,656640, %U A358091 -930240,496128,1472,-26880,225216,-1133440,3740352,-8160768,10767680,-5537664 %N A358091 Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x). %F A358091 P(n, -1/2) = A062236(n). %F A358091 (-1)^n*P(n + 1, 1) = A000309(n). %e A358091 [1] 1; %e A358091 [2] 5, -6; %e A358091 [3] 16, -60, 48; %e A358091 [4] 44, -288, 660, -440; %e A358091 [5] 112, -1056, 4032, -7280, 4368; %e A358091 [6] 272, -3360, 17952, -52224, 81600, -45696; %e A358091 [7] 640, -9792, 67200, -267520, 656640, -930240, 496128; %e A358091 [8] 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664; %o A358091 (SageMath) %o A358091 def P(n): %o A358091 h = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x) %o A358091 return h.series(x, n+1).polynomial(SR) %o A358091 for n in range(1, 9): print(P(n).list()) %o A358091 # To evaluate the polynomials use: %o A358091 def p(n, t): return Integer(P(n)(x=t).n()) %o A358091 # For example the next statements yield A062236 and A000309. %o A358091 print([p(n, -1/2) for n in range(1, 21)]) %o A358091 print([(-1)^n*p(n + 1, 1) for n in range(0, 22)]) %Y A358091 Cf. A062236, A000309. %K A358091 sign,tabl %O A358091 1,2 %A A358091 _Peter Luschny_, Oct 28 2022