A358092 Row sums of the convolution triangle of the Motzkin numbers (A202710).
1, 1, 3, 9, 28, 88, 279, 889, 2843, 9115, 29279, 94183, 303294, 977522, 3152709, 10173671, 32844544, 106073200, 342671109, 1107278239, 3578704532, 11568322736, 37400611581, 120931966547, 391065616195, 1264729338163, 4090528413309, 13230930776769, 42798305388298
Offset: 0
Keywords
Programs
-
Maple
ogf := (sqrt(x + 1)*(1 - 2*x) + sqrt(1 - 3*x)) / (sqrt(x + 1)*(1 - 4*x) + sqrt(1 - 3*x)): ser := series(ogf, x, 32): seq(coeff(ser, x, n), n = 0..28); # Alternatively: a := proc(n) option remember; ifelse(n < 5, [1, 1, 3, 9, 28][n + 1], ((36-12*n)*a(n-4) + (30-14*n)*a(n-3) + (3*n-3)*a(n-2) + a(n-1)*(4*n-3))/n) end: seq(a(n), n = 0..28);
Formula
a(n) = [x^n] (sqrt(x + 1)*(1 - 2*x) + sqrt(1 - 3*x)) / (sqrt(x + 1)*(1 - 4*x) + sqrt(1 - 3*x)).
a(n) = ((36-12*n)*a(n-4) + (30-14*n)*a(n-3) + (3*n-3)*a(n-2) + (4*n-3)*a(n-1))/n for n >= 5.