This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358096 #30 Dec 31 2023 13:24:56 %S A358096 1,1,1,0,0,1,0,2,1,2,0,3,0,0,2,1,0,2,0,2,0,3,0,4,0,2,1,3,0,5,0,0,3,2, %T A358096 0,6,0,1,2,2,0,5,0,2,3,2,0,3,0,3,2,4,0,7,0,2,1,3,0,6,0,3,2,5,0,7,0,0, %U A358096 2,3,0,8,0,2,3,6,0,10,0,1 %N A358096 a(n) is the number of ways n can be reached in the algorithm explained in A358094 if the last operation is multiplication. %H A358096 Yifan Xie, <a href="/A358096/b358096.txt">Table of n, a(n) for n = 1..10000</a> %F A358096 a(n) = A358095(n/2) + A358095(n/3) if n == 0 (mod 6); %F A358096 a(n) = A358095(n/2) if n == 2 or 4 (mod 6); %F A358096 a(n) = A358095(n/3) if n == 3 (mod 6); %F A358096 a(n) = 0 if n == 1 or 5 (mod 6). %e A358096 There are 3 ways to reach 12: (1*3+3)*2=12, (1*2+2)*3=12 and (1+3)*3=12. %o A358096 (C++) #include <iostream> %o A358096 using namespace std; int f(int x, bool y) { if(x<0) return 0; if(x==1) return 1; if(y==0) return f(x-2, 1)+f(x-3, 1); if(y==1) { if(x%6==0) return f(x/2, 0)+f(x/3, 0); if(x%6==1||x%6==5) return 0; if(x%6==2||x%6==4) return f(x/2, 0); if(x%6==3) return f(x/3, 0); } } int n; int main() { cin>>n; cout<<1<<", "; for(int i=2; i<n; i++) cout<<f(i, 1)<<", "; cout<<f(n, 1); return 0; } %Y A358096 Cf. A358094, A358095. %K A358096 nonn,easy %O A358096 1,8 %A A358096 _Yifan Xie_, Nov 01 2022