This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358102 #8 Nov 02 2022 11:54:09 %S A358102 66,153,266,609,806,1295,1599,1634,2107,3021,3055,3422,5254,5369,5795, %T A358102 5829,7138,8769,9443,9581,10585,10706,12337,12513,13298,16465,16511, %U A358102 16849,17013,18602,21983,22145,23241,23542,26159,29014,29607,29945,30943,32623,32809 %N A358102 Numbers of the form prime(w)*prime(x)*prime(y) with w >= x >= y such that 2w = 3x + 4y. %C A358102 Also Heinz numbers of integer partitions (w,x,y) summing to n such that 2w = 3x + 4y, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A358102 The terms together with their prime indices begin: %e A358102 66: {1,2,5} %e A358102 153: {2,2,7} %e A358102 266: {1,4,8} %e A358102 609: {2,4,10} %e A358102 806: {1,6,11} %e A358102 1295: {3,4,12} %e A358102 1599: {2,6,13} %e A358102 1634: {1,8,14} %e A358102 2107: {4,4,14} %e A358102 3021: {2,8,16} %e A358102 3055: {3,6,15} %e A358102 3422: {1,10,17} %e A358102 5254: {1,12,20} %e A358102 5369: {4,6,17} %e A358102 5795: {3,8,18} %e A358102 5829: {2,10,19} %e A358102 7138: {1,14,23} %e A358102 8769: {2,12,22} %t A358102 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358102 Select[Range[1000],PrimeOmega[#]==3&&2*primeMS[#][[-1]]==3*primeMS[#][[-2]]+4*primeMS[#][[-3]]&] %Y A358102 The ordered version is A357489, apparently counted by A008676. %Y A358102 These partitions are counted by A357849. %Y A358102 A000040 lists the primes. %Y A358102 A000041 counts partitions, strict A000009. %Y A358102 A003963 multiplies prime indices. %Y A358102 A056239 adds up prime indices. %Y A358102 Cf. A000720, A001221, A001222, A215366, A296150, A318283. %K A358102 nonn %O A358102 1,1 %A A358102 _Gus Wiseman_, Nov 02 2022