This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358104 #9 Jan 27 2023 21:07:38 %S A358104 1,2,2,3,4,4,5,3,6,7,8,6,9,4,8,10,11,6,12,13,14,10,15,16,12,9,17,5,18, %T A358104 14,8,19,20,21,22,16,23,6,24,18,12,25,26,27,20,28,29,30,15,22,31,12, %U A358104 32,24,33,34,7,35,36,26,18,37,10,28,38,39,30,40,41,8,42 %N A358104 Unreduced numerator of the n-th divisible pair, where pairs are ordered by Heinz number. Greater prime index of A318990(n). %C A358104 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A358104 A358103(n) = a(n)/A358105(n). %e A358104 The 12th divisible pair is (2,6) so a(12) = 6. %t A358104 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358104 Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>y,{0}],{n,1000}] %Y A358104 The divisible pairs are ranked by A318990, proper A339005. %Y A358104 For all semiprimes we have A338913. %Y A358104 The quotient of the pair is A358103. %Y A358104 The denominator is A358105. %Y A358104 The reduced version for all semiprimes is A358192, denominator A358193. %Y A358104 A000040 lists the primes. %Y A358104 A001222 counts prime indices, distinct A001221. %Y A358104 A001358 lists the semiprimes, squarefree A006881. %Y A358104 A003963 multiplies together prime indices. %Y A358104 A056239 adds up prime indices. %Y A358104 A318991 ranks divisor-chains. %Y A358104 Cf. A000720, A032741, A128301, A215366, A289508, A289509, A296150, A300912, A318992, A358106. %K A358104 nonn %O A358104 1,2 %A A358104 _Gus Wiseman_, Nov 02 2022