This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358106 #7 Nov 04 2022 14:44:25 %S A358106 1,2,3,1,4,5,2,1,6,7,3,1,8,2,9,4,1,10,11,5,3,2,1,12,13,6,1,14,4,2,15, %T A358106 7,3,1,16,17,8,5,2,1,18,19,9,4,3,1,20,6,2,21,10,1,22,23,11,7,5,3,2,1, %U A358106 24,4,25,12,1,26,8,2,27,13,6,3,1,28,29,14,9,5,4,2,1 %N A358106 Quotient of the n-th divisible pair, where pairs are ordered first by sum and then by denominator. %F A358106 a(n) = A208460(n)/A027751(n). %e A358106 Grouping by sum gives: %e A358106 2: 1 %e A358106 3: 2 %e A358106 4: 3 1 %e A358106 5: 4 %e A358106 6: 5 2 1 %e A358106 7: 6 %e A358106 8: 7 3 1 %e A358106 9: 8 2 %e A358106 10: 9 4 1 %e A358106 11: 10 %e A358106 12: 11 5 3 2 1 %e A358106 13: 12 %e A358106 14: 13 6 1 %e A358106 15: 14 4 2 %e A358106 16: 15 7 3 1 %e A358106 17: 16 %e A358106 18: 17 8 5 2 1 %t A358106 Table[Divide@@@Select[IntegerPartitions[n,{2}],Divisible@@#&],{n,2,30}] %Y A358106 Row-lengths are A032741. %Y A358106 This is A208460/A027751. %Y A358106 A ranking of divisible pairs is A318990, proper A339005. %Y A358106 A different ordering is A358103 = A358104 / A358105. %Y A358106 A000041 counts partitions, strict A000009. %Y A358106 A001358 lists semiprimes, squarefree A006881. %Y A358106 A318991 ranks divisor-chains. %Y A358106 A358192/A358193 gives quotients of semiprime indices. %Y A358106 Cf. A000837, A003238, A122934. %K A358106 nonn,tabf %O A358106 2,2 %A A358106 _Gus Wiseman_, Nov 03 2022