This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358108 #12 Nov 13 2022 16:24:19 %S A358108 1,20,420,9296,216868,5313360,135866640,3599688000,98122746660, %T A358108 2735243498960,77595234251920,2231860533960000,64904359322352400, %U A358108 1904342118510144320,56285527873777258560,1673824975976543421696,50036226313229526706980,1502471400349641645458640 %N A358108 a(n) = 16^n * Sum_{k=0..n} binomial(-1/2, k)^2 * binomial(n, k). %C A358108 Belongs to the family of Apéry-like sequences. %F A358108 a(n) = 16^n * hypergeom([1/2, 1/2, -n], [1, 1], -1). %F A358108 a(n) ~ 2^(5*n + 1) / (Pi*n). - _Vaclav Kotesovec_, Nov 12 2022 %p A358108 a := n -> 16^n*add(binomial(-1/2, k)^2*binomial(n, k), k = 0..n): %p A358108 seq(a(n), n = 0..17); %t A358108 a[n_] := 16^n * HypergeometricPFQ[{1/2, 1/2, -n}, {1, 1}, -1]; Array[a, 18, 0] (* _Amiram Eldar_, Nov 12 2022 *) %o A358108 (Python) %o A358108 from sympy import binomial, S %o A358108 def A358108(n): return (1<<(n<<2))*sum(binomial(-S.Half,k)**2*binomial(n,k) for k in range(n+1)) # _Chai Wah Wu_, Nov 13 2022 %Y A358108 Cf. A143583. %K A358108 nonn %O A358108 0,2 %A A358108 _Peter Luschny_, Nov 12 2022