A358110 Indices of the harmonic numbers in the Stern-Brocot sequence (A002487).
0, 1, 5, 125, 8195, 32675, 755, 34763, 520283, 37773179, 21743337467, 4647489635464983347207, 1236947931143, 272658152711, 604398345569737906323527, 9595849053479089263878087, 3693713292455, 288389531265129191, 11150032316898390632304469945009811031588839
Offset: 0
Keywords
Examples
Let Fusc(n) = fusc(n) / fusc(n + 1) where fusc = A002487. 0 = H(0) = Fusc(0) => a(0) = 0. 1 = H(1) = Fusc(1) => a(1) = 1. (3/2) = H(2) = Fusc(5) => a(2) = 5. (11/6) = H(3) = Fusc(125) => a(3) = 125. (25/12) = H(4) = Fusc(8195) => a(4) = 8195. (137/60) = H(5) = Fusc(32675) => a(5) = 32676. (49/20) = H(6) = Fusc(755) => a(6) = 755. (363/140) = H(7) = Fusc(34763) => a(7) = 34763. (761/280) = H(8) = Fusc(520283) => a(8) = 520283.
References
- Edsger W. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232 (sequence A002487 is called fusc).
Links
- Edsger W. Dijkstra, More about the function "fusc".
- Peter Luschny, Rational Trees and Binary Partitions.
- Rémy Sigrist, Logarithmic binary plot of the sequence for n = 0..2048
Programs
-
PARI
a(n) = { my (h=sum(i=1, n, 1/i), x=numerator(h), y=denominator(h)); if (x==0, 0, my (v=0, t=1, a=0, b=1, c=1, d=0); while (1, my (m=a+c, n=b+d); if (x*n==y*m, return (t+v), x*n
Rémy Sigrist, Nov 08 2022 -
Python
# using function harmonic from A001008 def A358110(n: int) -> int: if n == 0: return 0 x, y = harmonic(1, n + 1) a = d = v = 0 b = c = t = 1 while True: m = a + c n = b + d if x * n == y * m: return v + t if x * n < y * m: c, d = m, n else: v, a, b = v + t, m, n t *= 2 print([A358110(n) for n in range(19)]) # (after Rémy Sigrist) Peter Luschny, Nov 08 2022
Formula
Extensions
More terms from Rémy Sigrist, Nov 08 2022
Comments